In Situ Formed “Sn1–XInX@In1–YSnYOZ” Core@Shell Nanoparticles as Electrocatalysts for CO2 Reduction to Formate

dc.contributor.authorPardo Pérez, Laura C.
dc.contributor.authorTeschner, Detre
dc.contributor.authorWillinger, Elena
dc.contributor.authorGuiet, Amandine
dc.contributor.authorDriess, Matthias
dc.contributor.authorStrasser, Peter
dc.contributor.authorFischer, Anna
dc.date.accessioned2022-03-31T07:17:58Z
dc.date.available2022-03-31T07:17:58Z
dc.date.issued2021-07-16
dc.date.updated2022-03-21T03:59:15Z
dc.description.abstractElectrochemical reduction of CO2 (CO2RR) driven by renewable energy has gained increasing attention for sustainable production of chemicals and fuels. Catalyst design to overcome large overpotentials and poor product selectivity remains however challenging. Sn/SnOx and In/InOx composites have been reported active for CO2RR with high selectivity toward formate formation. In this work, the CO2RR activity and selectivity of metal/metal oxide composite nanoparticles formed by in situ reduction of bimetallic amorphous SnInOx thin films are investigated. It is shown that during CO2RR the amorphous SnInOx pre‐catalyst thin films are reduced in situ into Sn1–XInX@In1–YSnYOz core@shell nanoparticles composed of Sn‐rich SnIn alloy nanocores (with x < 0.2) surrounded by InOx‐rich bimetallic InSnOx shells (with 0.3 < y < 0.4 and z ≈ 1). The in situ formed particles catalyze the CO2RR to formate with high faradaic efficiency (80%) and outstanding formate mass activity (437 A gIn+Sn−1 @ −1.0 V vs RHE in 0.1 m KHCO3). While extensive structural investigation during CO2RR reveals pronounced dynamics in terms of particle size, the core@shell structure is observed for the different electrolysis conditions essayed, with high surface oxide contents favoring formate over hydrogen selectivity.en
dc.description.sponsorshipDFG, 53182490, EXC 314: Unifying Concepts in Catalysisen
dc.description.sponsorshipBMBF, 03X5524, EDELKAT - Hydrophobe Nanoreaktor Templatierung - Eine Tool-Box für optimierte Elektrokatalysatorenen
dc.description.sponsorshipBMBF, 01FP13033F, Förderung der Vorgriffsprofessur im Fach "Anorganische Funktionsmaterialien" im Rahmen des Professorinnenprogramms II an der Albert-Ludwigs-Universität Freiburgen
dc.description.sponsorshipEC/H2020/101006701/EU/Renewable Electricity-based, cyclic and economic production of Fuel/EcoFuelen
dc.identifier.eissn1616-3028
dc.identifier.issn1616-301X
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/16619
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-15396
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.otherelectrochemical CO2 reductionen
dc.subject.otherformateen
dc.subject.otherindium‐based electrocatalystsen
dc.subject.othermetal@metal oxide core@shell electrocatalystsen
dc.subject.otheroxide derived electrocatalystsen
dc.subject.othertin‐based electrocatalystsen
dc.titleIn Situ Formed “Sn1–XInX@In1–YSnYOZ” Core@Shell Nanoparticles as Electrocatalysts for CO2 Reduction to Formateen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber2103601en
dcterms.bibliographicCitation.doi10.1002/adfm.202103601en
dcterms.bibliographicCitation.issue41en
dcterms.bibliographicCitation.journaltitleAdvanced Functional Materialsen
dcterms.bibliographicCitation.originalpublishernameWileyen
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.volume31en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Technische Chemiede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Technische Chemiede
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
ADFM_ADFM202103601.pdf
Size:
2.78 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections