Quantification and isotherm modelling of competitive phosphate and silicate adsorption onto micro-sized granular ferric hydroxide

dc.contributor.authorHilbrandt, Inga
dc.contributor.authorLehmann, Vito
dc.contributor.authorZietzschmann, Frederik
dc.contributor.authorRuhl, Aki Sebastian
dc.contributor.authorJekel, Martin
dc.date.accessioned2019-09-11T17:16:30Z
dc.date.available2019-09-11T17:16:30Z
dc.date.issued2019-07-30
dc.description.abstractAdsorption onto ferric hydroxide is a known method to reach very low residual phosphate concentrations. Silicate is omnipresent in surface and industrial waters and reduces the adsorption capacity of ferric hydroxides. The present article focusses on the influences of silicate concentration and contact time on the adsorption of phosphate to a micro-sized iron hydroxide adsorbent (μGFH) and fits adsorption data to multi-component adsorption isotherms. In Berlin drinking water (DOC of approx. 4 mg L−1) at pH 7.0, loadings of 24 mg g−1 P (with 3 mg L−1 initial PO43−–P) and 17 mg L−1 Si (with 9 mg L−1 initial Si) were reached. In deionized water, phosphate shows a high percentage of reversible bonds to μGFH while silicate adsorption is not reversible probably due to polymerization. Depending on the initial silicate concentration, phosphate loadings are reduced by 27, 33 and 47% (for equilibrium concentrations of 1.5 mg L−1) for 9, 14 and 22 mg L−1 Si respectively. Out of eight tested multi-component adsorption models, the Extended Freundlich Model Isotherm (EFMI) describes the simultaneous adsorption of phosphate and silicate best. Thus, providing the means to predict and control phosphate removal. Longer contact times of the adsorbent with silicate prior to addition of phosphate reduce phosphate adsorption significantly. Compared to 7 days of contact with silicate (c0 = 10 mg L−1) prior to phosphate (c0 = 3 mg L−1) addition, 28 and 56 days reduce the μGFH capacity for phosphate by 21 and 43%, respectively.en
dc.description.sponsorshipDFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berlinen
dc.description.sponsorshipBMBF, 02WIL1389, AdsFilt: Entfernung anorganischer Wasserschadstoffe durch neuartige Hybridprozesse mit Adsorption und Filtration (Deutsch-Israelische Wassertechnologie-Kooperation)en
dc.identifier.eissn2046-2069
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/10007
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-8998
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/en
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.othermicro-sized ferric hydroxideen
dc.subject.othersilicate adsorptionen
dc.titleQuantification and isotherm modelling of competitive phosphate and silicate adsorption onto micro-sized granular ferric hydroxideen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1039/C9RA04865Ken
dcterms.bibliographicCitation.issue41en
dcterms.bibliographicCitation.journaltitleRSC Advancesen
dcterms.bibliographicCitation.originalpublishernameRSC Publishingen
dcterms.bibliographicCitation.originalpublisherplaceLondonen
dcterms.bibliographicCitation.pageend23651en
dcterms.bibliographicCitation.pagestart23642en
dcterms.bibliographicCitation.volume9en
tub.accessrights.dnbfreeen
tub.affiliationFak. 3 Prozesswissenschaften::Inst. Technischen Umweltschutz::FG Wasserreinhaltungde
tub.affiliation.facultyFak. 3 Prozesswissenschaftende
tub.affiliation.groupFG Wasserreinhaltungde
tub.affiliation.instituteInst. Technischen Umweltschutzde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
c9ra04865k.pdf
Size:
876.56 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections