Quantitative hyperspectral coherent diffractive imaging spectroscopy of a solid-state phase transition in vanadium dioxide

dc.contributor.authorJohnson, Allan S.
dc.contributor.authorConesa, Jordi Valls
dc.contributor.authorVidas, Luciana
dc.contributor.authorPerez-Salinas, Daniel
dc.contributor.authorGünther, Christian M.
dc.contributor.authorPfau, Bastian
dc.contributor.authorHallman, Kent A.
dc.contributor.authorHaglund, Richard F. Jr.
dc.contributor.authorEisebitt, Stefan
dc.contributor.authorWall, Simon
dc.date.accessioned2021-11-03T15:35:18Z
dc.date.available2021-11-03T15:35:18Z
dc.date.issued2021-08-11
dc.description.abstractSolid-state systems can host a variety of thermodynamic phases that can be controlled with magnetic fields, strain, or laser excitation. Many phases that are believed to exhibit exotic properties only exist on the nanoscale, coexisting with other phases that make them challenging to study, as measurements require both nanometer spatial resolution and spectroscopic information, which are not easily accessible with traditional x-ray spectromicroscopy techniques. Here, we use coherent diffractive imaging spectroscopy (CDIS) to acquire quantitative hyperspectral images of the prototypical quantum material vanadium oxide across the vanadium L2,3 and oxygen K x-ray absorption edges with nanometer-scale resolution. We extract the full complex refractive indices of the monoclinic insulating and rutile conducting phases of VO2 from a single sample and find no evidence for correlation-driven phase transitions. CDIS will enable quantitative full-field x-ray spectromicroscopy for studying phase separation in time-resolved experiments and other extreme sample environments where other methods cannot operate.en
dc.description.sponsorshipEC/H2020/758461/EU/Probing nanoscale and femtosecond fluctuations in high temperature superconductors/SeeSuperen
dc.description.sponsorshipEC/H2020/754510/EU/COFUND BIST POSTDOCTORAL FELLOWSHIP PROGRAMME/PROBISTen
dc.identifier.eissn2375-2548
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/13797
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-12573
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en
dc.subject.ddc530 Physikde
dc.subject.otherspectroscopyen
dc.subject.othersolid-state phase transitionen
dc.subject.othervanadium dioxideen
dc.titleQuantitative hyperspectral coherent diffractive imaging spectroscopy of a solid-state phase transition in vanadium dioxideen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumbereabf1386en
dcterms.bibliographicCitation.doi10.1126/sciadv.abf1386en
dcterms.bibliographicCitation.issue33en
dcterms.bibliographicCitation.journaltitleScience Advancesen
dcterms.bibliographicCitation.originalpublishernameAmerican Association for the Advancement of Science (AAAS)en
dcterms.bibliographicCitation.originalpublisherplaceWashington, DCen
dcterms.bibliographicCitation.volume7en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Optik und Atomare Physik::FG Röntgenoptik und Nanometer-Optikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Röntgenoptik und Nanometer-Optikde
tub.affiliation.instituteInst. Optik und Atomare Physikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Johnson_etal_Quantitative_2021.pdf
Size:
33.79 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
5.75 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections