Universality of steady shear flow of Rouse melts

dc.contributor.authorPoh, Leslie
dc.contributor.authorNarimissa, Esmaeil
dc.contributor.authorWagner, Manfred H.
dc.date.accessioned2021-03-04T08:46:25Z
dc.date.available2021-03-04T08:46:25Z
dc.date.issued2020-08-29
dc.description.abstractThe data set of steady and transient shear data reported by Santangelo and Roland Journal of Rheology 45: 583–594, (2001) in the nonlinear range of shear rates of an unentangled polystyrene melt PS13K with a molar mass of 13.7 kDa is analysed by using the single integral constitutive equation approach developed by Narimissa and Wagner Journal of Rheology 64:129–140, (2020) for elongational and shear flow of Rouse melts. We compare model predictions with the steady-state, stress growth, and stress relaxation data after start-up shear flows. In characterising the linear-viscoelastic relaxation behaviour, we consider that in the vicinity of the glass transition temperature, Rouse modes and glassy modes are inseparable, and we model the terminal regime of PS13K by effective Rouse modes. Excellent agreement is achieved between model predictions and shear viscosity data, and good agreement with first normal stress coefficient data. In particular, the shear viscosity data of PS13K as well as of two polystyrene melts with M = 10.5 kDa and M = 9.8 kDa investigated by Stratton Macromolecules 5 (3): 304–310, (1972) agree quantitatively with the universal mastercurve predicted by Narimissa and Wagner for unentangled melts, and approach a scaling of Wi−1/2at sufficiently high Weissenberg numbers Wi. Some deviations between model predictions and data are seen for stress growth and stress relaxation of shear stress and first normal stress difference, which may be attributed to limitations of the experimental data, and may also indicate limitations of the model due to the complex interactions of Rouse modes and glassy modes in the vicinity of the glass transition temperature.en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2020en
dc.identifier.eissn1435-1528
dc.identifier.issn0035-4511
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12715
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-11515
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530 Physiken
dc.subject.otherpolystyreneen
dc.subject.otherrouse relaxation spectrumen
dc.subject.othersingle integral constitutive equationen
dc.subject.otherunentangled polymer melten
dc.subject.otheruniversal viscosity master curveen
dc.titleUniversality of steady shear flow of Rouse meltsen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1007/s00397-020-01236-2en
dcterms.bibliographicCitation.issue10en
dcterms.bibliographicCitation.journaltitleRheologica Actaen
dcterms.bibliographicCitation.originalpublishernameSpringerNatureen
dcterms.bibliographicCitation.originalpublisherplaceLondon [u.a.]en
dcterms.bibliographicCitation.pageend763en
dcterms.bibliographicCitation.pagestart755en
dcterms.bibliographicCitation.volume59en
tub.accessrights.dnbfreeen
tub.affiliationFak. 3 Prozesswissenschaften::Inst. Werkstoffwissenschaften und -technologien::FG Polymertechnik und Polymerphysikde
tub.affiliation.facultyFak. 3 Prozesswissenschaftende
tub.affiliation.groupFG Polymertechnik und Polymerphysikde
tub.affiliation.instituteInst. Werkstoffwissenschaften und -technologiende
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Poh_etal_Universality_2020.pdf
Size:
833.18 KB
Format:
Adobe Portable Document Format

Collections