Clay in situ resource utilization with Mars global simulant slurries for additive manufacturing and traditional shaping of unfired green bodies

dc.contributor.authorKarl, David
dc.contributor.authorDuminy, Thomas
dc.contributor.authorLima, Pedro
dc.contributor.authorKamutzki, Franz
dc.contributor.authorGili, Albert
dc.contributor.authorZocca, Andrea
dc.contributor.authorGünster, Jens
dc.contributor.authorGurlo, Aleksander
dc.date.accessioned2022-05-17T12:03:48Z
dc.date.available2022-05-17T12:03:48Z
dc.date.issued2020-05-11
dc.description.abstractThe wet processing of regolith simulant for clay in situ resource utilization (ISRU) on Mars is presented. The two raw materials from the Mars global simulant family, one without clay (MGS-1) and one with clay - sodium montmorillonite smectite - (MGS-1C) were milled and mixed to produce a simulant with small particle size and reduced clay content (MGS-1C/8). All three simulants and the pure clay raw material were extensively characterized using XRF, synchrotron XRD, gas adsorption and gas pycnometry methods. In a straightforward processing approach, MGS-1C/8 was mixed with water and different dispersant approaches were investigated, all of which gave stable slurries. Particle size distribution, rheology, ion concentration, pH and electrical conductivity of these slurries were characterized. The slurry systems can easily be adapted to fit all typical ceramic shaping routes and here parts of varying complexity from slip casting, throwing on a potter's wheel and additive manufacturing, including material extrusion (robocasting) and binder jetting (powder bed 3D printing) were produced. The unique properties of the sodium montmorillonite clay, which is readily accessible in conjunction with magnesium sulfate on the Martian surface, acted as a natural nanosized binder and produced high strength green bodies (unfired ceramic body) with compressive strength from 3.3 to 7.5 MPa. The most elaborate additive manufacturing technique layerwise slurry deposition (LSD) produced water-resistant green bodies with a compressive strength of 30.8 ± 2.5 MPa by employing a polymeric binder, which is similar or higher than the strength of standard concrete. The unfired green bodies show sufficient strength to be used for remote habitat building on Mars using additive manufacturing without humans being present.en
dc.identifier.eissn1879-2030
dc.identifier.issn0094-5765
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/16937
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-15716
dc.language.isoenen
dc.relation.ispartof10.14279/depositonce-12276
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitende
dc.subject.ddc666 Keramiktechnologie und zugeordnete Technologiende
dc.subject.otherMars smectiteen
dc.subject.otherclay ISRUen
dc.subject.otherMGS-1 regolith simulanten
dc.subject.other3D printingen
dc.subject.otherslurry additive manufacturingen
dc.subject.otherwet processingen
dc.subject.otherMartian habitaten
dc.titleClay in situ resource utilization with Mars global simulant slurries for additive manufacturing and traditional shaping of unfired green bodiesen
dc.typeArticleen
dc.type.versionacceptedVersionen
dcterms.bibliographicCitation.doi10.1016/j.actaastro.2020.04.064en
dcterms.bibliographicCitation.journaltitleActa Astronauticaen
dcterms.bibliographicCitation.originalpublishernameElsevieren
dcterms.bibliographicCitation.originalpublisherplaceAmsterdamen
dcterms.bibliographicCitation.pageend253en
dcterms.bibliographicCitation.pagestart241en
dcterms.bibliographicCitation.volume174en
tub.accessrights.dnbfreeen
tub.affiliationFak. 3 Prozesswissenschaften>Inst. Werkstoffwissenschaften und -technologien>FG Keramische Werkstoffede
tub.affiliation.facultyFak. 3 Prozesswissenschaftende
tub.affiliation.groupFG Keramische Werkstoffede
tub.affiliation.instituteInst. Werkstoffwissenschaften und -technologiende
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Karl_etal_Clay_2020.pdf
Size:
6.92 MB
Format:
Adobe Portable Document Format
Description:
Collections