Self‐Supported Electrocatalysts for Practical Water Electrolysis

dc.contributor.authorYang, Hongyuan
dc.contributor.authorDriess, Matthias
dc.contributor.authorMenezes, Prashanth W.
dc.date.accessioned2022-03-31T08:00:58Z
dc.date.available2022-03-31T08:00:58Z
dc.date.issued2021-09-01
dc.date.updated2022-03-21T05:28:28Z
dc.description.abstractOver the years, significant advances have been made to boost the efficiency of water splitting by carefully designing economic electrocatalysts with augmented conductivity, more accessible active sites, and high intrinsic activity in laboratory test conditions. However, it remains a challenge to develop earth‐abundant catalysts that can satisfy the demands of practical water electrolysis, that is, outstanding all‐pH electrolyte capacity, direct seawater splitting ability, exceptional performance for overall water splitting, superior large‐current‐density activity, and robust long‐term durability. In this context, considering the features of increased active species loading, rapid charge, and mass transfer, a strong affinity between catalytic components and substrates, easily‐controlled wettability, as well as, enhanced bifunctional performance, the self‐supported electrocatalysts are presently projected to be the most suitable contenders for practical massive scale hydrogen generation. In this review, a comprehensive introduction to the design and fabrication of self‐supported electrocatalysts with an emphasis on the design of deposited nanostructured catalysts, the selection of self‐supported substrates, and various fabrication methods are provided. Thereafter, the recent development of promising self‐supported electrocatalysts for practical applications is reviewed from the aforementioned aspects. Finally, a brief conclusion is delivered and the challenges and perspectives relating to promotion of self‐supported electrocatalysts for sustainable large‐scale production of hydrogen are discussed.en
dc.description.sponsorshipDFG, 390540038, EXC 2008: Unifying Systems in Catalysis "UniSysCat"en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2021
dc.identifier.eissn1614-6840
dc.identifier.issn1614-6832
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/16622
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-15399
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc660 Chemische Verfahrenstechnikde
dc.subject.otherelectrocatalystsen
dc.subject.otherhydrogen fuelen
dc.subject.otherpractical applicationen
dc.subject.otherself‐supporteden
dc.subject.otherwater electrolysisen
dc.titleSelf‐Supported Electrocatalysts for Practical Water Electrolysisen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber2102074en
dcterms.bibliographicCitation.doi10.1002/aenm.202102074en
dcterms.bibliographicCitation.issue39en
dcterms.bibliographicCitation.journaltitleAdvanced Energy Materialsen
dcterms.bibliographicCitation.originalpublishernameWileyen
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.volume11en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Metallorganische Chemie und Anorganische Materialiende
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Metallorganische Chemie und Anorganische Materialiende
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
AENM_AENM202102074.pdf
Size:
8.65 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections