Bimodal behavior of microlasers investigated with a two-channel photon-number-resolving transition-edge sensor system

dc.contributor.authorSchmidt, Marco
dc.contributor.authorGrothe, Isa Hedda
dc.contributor.authorNeumeier, Sergej
dc.contributor.authorBremer, Lucas
dc.contributor.authorHelversen, Martin von
dc.contributor.authorZent, Wenera
dc.contributor.authorMelcher, Boris
dc.contributor.authorBeyer, Jörn
dc.contributor.authorSchneider, Christian
dc.contributor.authorHöfling, Sven
dc.contributor.authorWiersig, Jan
dc.contributor.authorReitzenstein, Stephan
dc.date.accessioned2021-08-03T12:48:07Z
dc.date.available2021-08-03T12:48:07Z
dc.date.issued2021-03-19
dc.description.abstractWe explore the photon-number distribution of bimodal quantum-dot micropillar lasers with a two-channel transition-edge sensor (TES) detection system. The two channels of the photon-number-resolving TES system simultaneously detect light emission of two orthogonal components of the micropillar's fundamental emission mode. The applied experimental scheme provides unprecedented access to the joint photon-number distribution and enables a profound insight into the dynamics and photon statistics of the gain-coupled mode components. In particular, the two-channel TES measurements reveal an optical bistability of the correlated laser modes leading to temporal hopping between emission associated with Poissonian and thermal-like emission statistics. The experimental data and theoretical modeling based on Monte Carlo simulations are in good agreement and reveal the anticorrelated behavior of the mode hopping, which results in intensity fluctuations and superthermal values of the autocorrelation function. Our investigations clearly demonstrate the great benefit of using photon-number-resolving detectors in nanophotonics to explore the rich physics of multimode micro- and nanolasers.en
dc.description.sponsorshipEC/H2020/615613/EU/External Quantum Control of Photonic Semiconductor Nanostructures/EXQUISITEen
dc.identifier.eissn2643-1564
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/13477
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-12263
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc530 Physikde
dc.subject.othercavity quantum electrodynamicsen
dc.subject.othernanophotonicsen
dc.subject.otherphoton statisticsen
dc.subject.otherphotonicsen
dc.subject.othersemiconductor microcavitiesen
dc.subject.othersemiconductor quantum opticsen
dc.subject.otherphoton countingen
dc.titleBimodal behavior of microlasers investigated with a two-channel photon-number-resolving transition-edge sensor systemen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber013263en
dcterms.bibliographicCitation.doi10.1103/PhysRevResearch.3.013263en
dcterms.bibliographicCitation.issue1en
dcterms.bibliographicCitation.journaltitlePhysical Review Researchen
dcterms.bibliographicCitation.originalpublishernameAmerican Physical Society (APS)en
dcterms.bibliographicCitation.originalpublisherplaceCollege Park, MDen
dcterms.bibliographicCitation.volume3en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften>Inst. Festkörperphysik>AG Optoelektronik und Quantenbauelementede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupAG Optoelektronik und Quantenbauelementede
tub.affiliation.instituteInst. Festkörperphysikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Schmidt_etal_Bimodal_2021.pdf
Size:
1011.6 KB
Format:
Adobe Portable Document Format
Description:
Collections