Probing electron and hole colocalization by resonant four-wave mixing spectroscopy in the extreme ultraviolet

dc.contributor.authorRottke, Horst
dc.contributor.authorEngel, Robin Y.
dc.contributor.authorSchick, Daniel
dc.contributor.authorSchunck, Jan O.
dc.contributor.authorMiedema, Piter S.
dc.contributor.authorBorchert, Martin C.
dc.contributor.authorKuhlmann, Marion
dc.contributor.authorEkanayake, Nagitha
dc.contributor.authorDziarzhytski, Siarhei
dc.contributor.authorBrenner, Günter
dc.contributor.authorEichmann, Ulrich
dc.contributor.authorKorff Schmising, Clemens von
dc.contributor.authorBeye, Martin
dc.contributor.authorEisebitt, Stefan
dc.date.accessioned2022-06-20T13:19:08Z
dc.date.available2022-06-20T13:19:08Z
dc.date.issued2022-05-20
dc.description.abstractExtending nonlinear spectroscopic techniques into the x-ray domain promises unique insight into photoexcited charge dynamics, which are of fundamental and applied interest. We report on the observation of a third-order nonlinear process in lithium fluoride (LiF) at a free-electron laser. Exploring the yield of four-wave mixing (FWM) in resonance with transitions to strongly localized core exciton states versus delocalized Bloch states, we find resonant FWM to be a sensitive probe for the degree of charge localization: Substantial sum- and difference-frequency generation is observed exclusively when in a one- or three-photon resonance with a LiF core exciton, with a dipole forbidden transition affecting details of the nonlinear response. Our reflective geometry–based approach to detect FWM signals enables the study of a wide variety of condensed matter sample systems, provides atomic selectivity via resonant transitions, and can be easily scaled to shorter wavelengths at free-electron x-ray lasers.en
dc.identifier.eissn2375-2548
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/17132
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-15911
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en
dc.subject.ddc530 Physikde
dc.subject.otherhole colocalizationen
dc.subject.otherspectroscopyen
dc.subject.otherextreme ultravioleten
dc.subject.otherprobing electronen
dc.subject.othernonlinear spectroscopic techniquesen
dc.titleProbing electron and hole colocalization by resonant four-wave mixing spectroscopy in the extreme ultravioleten
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumbereabn5127en
dcterms.bibliographicCitation.doi10.1126/sciadv.abn5127en
dcterms.bibliographicCitation.issue20en
dcterms.bibliographicCitation.journaltitleScience Advancesen
dcterms.bibliographicCitation.originalpublishernameAmerican Association for the Advancement of Scienceen
dcterms.bibliographicCitation.originalpublisherplaceWashington, DCen
dcterms.bibliographicCitation.volume8en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Optik und Atomare Physik::FG Röntgenoptik und Nanometer-Optikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Röntgenoptik und Nanometer-Optikde
tub.affiliation.instituteInst. Optik und Atomare Physikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Rottke_etal_Probing_2022.pdf
Size:
5.02 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections