Anisotropic thermoreflectance thermometry: A contactless frequency-domain thermoreflectance approach to study anisotropic thermal transport

dc.contributor.authorPérez, Luis A.
dc.contributor.authorXu, Kai
dc.contributor.authorWagner, Markus R.
dc.contributor.authorDörling, Bernhard
dc.contributor.authorPerevedentsev, Aleksandr
dc.contributor.authorGoñi, Alejandro R.
dc.contributor.authorCampoy-Quiles, Mariano
dc.contributor.authorAlonso, M. Isabel
dc.contributor.authorReparaz, Juan Sebastián
dc.date.accessioned2022-05-23T11:46:41Z
dc.date.available2022-05-23T11:46:41Z
dc.date.issued2022-03-29
dc.descriptionThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Pérez, L. A., Xu, K., Wagner, M. R., Dörling, B., Perevedentsev, A., Goñi, A. R., Campoy-Quiles, M., Alonso, M. I., & Reparaz, J. S. (2022). Anisotropic thermoreflectance thermometry: A contactless frequency-domain thermoreflectance approach to study anisotropic thermal transport. In Review of Scientific Instruments (Vol. 93, Issue 3, p. 034902). AIP Publishing and may be found at https://doi.org/10.1063/5.0066166.en
dc.description.abstractWe developed a novel contactless frequency-domain thermoreflectance approach to study thermal transport, which is particularly convenient when thermally anisotropic materials are considered. The method is based on a line-shaped heater geometry, produced with a holographic diffractive optical element, instead of using a spot heater as in conventional thermoreflectance. The heater geometry is similar to the one used in the 3-omega method, however, keeping all the technical advantages offered by non-contact methodologies. The present method is especially suitable to determine all the elements of the thermal conductivity tensor, which is experimentally achieved by simply rotating the sample with respect to the line-shaped optical heater. We provide the mathematical solution of the heat equation for the cases of anisotropic substrates, thin films, and multilayer systems. This methodology allows an accurate determination of the thermal conductivity and does not require complex modeling or intensive computational efforts to process the experimental data, i.e., the thermal conductivity is obtained through a simple linear fit (“slope method”), in a similar fashion to the 3-omega method. We demonstrate the potential of this approach by studying isotropic and anisotropic materials in a wide range of thermal conductivities. In particular, we have studied the following inorganic and organic systems: (i) glass, Si, and Ge substrates (isotropic), (ii) β-Ga2O3 and a Kapton substrate (anisotropic), and (iii) a 285 nm thick SiO2 thin film deposited on a Si substrate. The accuracy in the determination of the thermal conductivity is estimated as ≈5%, whereas the temperature uncertainty is ΔT ≈ 3 mK.en
dc.description.sponsorshipEC/H2020/648901/EU/Finding a needle in a haystack: efficient identification of high performing organic energy materials/FOREMATen
dc.identifier.eissn1089-7623
dc.identifier.issn0034-6748
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/16982
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-15761
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc530 Physikde
dc.subject.otherthin filmsen
dc.subject.otherthermodynamic propertiesen
dc.subject.othertemperature metrologyen
dc.subject.otherthermal conductivityen
dc.subject.otheroptical metrologyen
dc.subject.otherthermal transporten
dc.subject.othersemiconductorsen
dc.subject.otherlasersen
dc.subject.otherdata processingen
dc.titleAnisotropic thermoreflectance thermometry: A contactless frequency-domain thermoreflectance approach to study anisotropic thermal transporten
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber034902en
dcterms.bibliographicCitation.doi10.1063/5.0066166en
dcterms.bibliographicCitation.issue3en
dcterms.bibliographicCitation.journaltitleReview of Scientific Instrumentsen
dcterms.bibliographicCitation.originalpublishernameAIPen
dcterms.bibliographicCitation.originalpublisherplaceMelville, NYen
dcterms.bibliographicCitation.volume93en
tub.accessrights.dnbdomain*
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Festkörperphysik::AG Halbleiter Nanophononik und Nanophotonikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupAG Halbleiter Nanophononik und Nanophotonikde
tub.affiliation.instituteInst. Festkörperphysikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Perez_etal_Anisotropic_2022.pdf
Size:
5.69 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections