Predicting musical meaning in audio branding scenarios
dc.contributor.author | Herzog, Martin | |
dc.contributor.author | Lepa, Steffen | |
dc.contributor.author | Steffens, Jochen | |
dc.contributor.author | Schoenrock, Andreas | |
dc.contributor.author | Egermann, Hauke | |
dc.date.accessioned | 2017-07-13T14:13:22Z | |
dc.date.available | 2017-07-13T14:13:22Z | |
dc.date.issued | 2017 | |
dc.description.abstract | This paper describes the concept of applying automatic music recommendation to the audio branding domain. We describe our approach of developing a prediction model for the perceived expressive content of music which is based on a large-scale listening experiment. We present an orthogonal 4-factor model for measuring musical expression as outcome variable, whereas audio- and music features as well as lyric-based features are introduced as prediction variables in the model. Furthermore, we describe Random Forest Regression as a concept for feature selection required to develop a Multi-Level Regression Model, which is taking individual listener parameters into account. Finally, we present first results from a preliminary stepwise regression model for perceived musical expression. | en |
dc.description.sponsorship | EC/H2020/688122/EU/Artist-to-Business-to-Business-to-Consumer Audio Branding System/ABC DJ | en |
dc.identifier.uri | http://depositonce.tu-berlin.de/handle/11303/6476 | |
dc.identifier.uri | http://dx.doi.org/10.14279/depositonce-5984 | |
dc.language.iso | en | en |
dc.relation.ispartof | 10.14279/depositonce-16415 | en |
dc.relation.references | http://dx.doi.org/10.14279/depositonce-5957 | en |
dc.relation.references | http://dx.doi.org/10.14279/depositonce-5958 | en |
dc.relation.references | https://doi.org/10.14279/depositonce-5982 | |
dc.relation.references | https://doi.org/10.14279/depositonce-5983 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject.ddc | 153 Kognitive Prozesse, Intelligenz | de |
dc.subject.other | audio branding | en |
dc.subject.other | GMBI | en |
dc.subject.other | music branding | en |
dc.subject.other | music information retrieval | en |
dc.subject.other | music recommendation | en |
dc.subject.other | musical semantics | en |
dc.subject.other | prediction model | en |
dc.subject.other | random forest regression | en |
dc.title | Predicting musical meaning in audio branding scenarios | en |
dc.type | Conference Object | en |
dc.type.version | submittedVersion | en |
dcterms.bibliographicCitation.proceedingstitle | Proceedings of the 25th Anniversary Conference of the European Society for Cognitive Science of Music, Ghent, Belgium, 31 July - 4 August 2017 | en |
tub.accessrights.dnb | free | en |
tub.affiliation | Fak. 1 Geistes- und Bildungswissenschaften>Inst. Sprache und Kommunikation>FG Audiokommunikation | de |
tub.affiliation.faculty | Fak. 1 Geistes- und Bildungswissenschaften | de |
tub.affiliation.group | FG Audiokommunikation | de |
tub.affiliation.institute | Inst. Sprache und Kommunikation | de |
tub.publisher.universityorinstitution | Technische Universität Berlin | en |
Files
Original bundle
1 - 1 of 1
Loading…
- Name:
- 2017_herzog_et-al.pdf
- Size:
- 500.99 KB
- Format:
- Adobe Portable Document Format
- Description: