Thumbnail Image

Influence of temperature and sliding speed on the subsurface microstructure evolution of EN AW-6060 under sticking friction conditions

Sanabria, Vidal; Müller, Sören

The microstructure evolution of the friction boundary layer of the aluminum alloy EN AW-6060 was investigated. Sticking friction tests at different temperatures and sliding speeds were carried out. A severe deformation below the friction surface was observed by means of LOM and EBSD mapping. Thus, the thickness variation and the grain structure of the high deformation zone could be described. Fibrous structure was observed at 300 °C and 400 °C, while equiaxed grains with high misorientation angle (>15°) were generated at higher temperatures. Additionally, abnormal grain growth and coarse grains were detected at high sliding speeds (10 mm/s, 42 mm/s) at 450°C and 500 °C respectively.
Published in: AIP Conference Proceedings, 10.1063/1.5008168, American Institute of Physics (AIP)
  • This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in AIP Conference Proceedings 1896, 140012 (2017) and may be found at https://doi.org/10.1063/1.5008168.