Controlling Near-Surface Ni Composition in Octahedral PtNi(Mo) Nanoparticles by Mo Doping for a Highly Active Oxygen Reduction Reaction Catalyst

dc.contributor.authorDionigi, Fabio
dc.contributor.authorWeber, C. Cesar
dc.contributor.authorPrimbs, Mathias
dc.contributor.authorGocyla, M.
dc.contributor.authorBonastre, A. Martinez
dc.contributor.authorSpöri, Camillo
dc.contributor.authorSchmies, Henrike
dc.contributor.authorHornberger, Elisabeth
dc.contributor.authorKühl, Stefanie
dc.contributor.authorDrnec, J.
dc.contributor.authorHeggen, M.
dc.contributor.authorSharman, J.
dc.contributor.authorDunin-Borkowski, R. Edward
dc.contributor.authorStrasser, Peter
dc.date.accessioned2022-01-04T10:58:35Z
dc.date.available2022-01-04T10:58:35Z
dc.date.issued2019-09-11
dc.description.abstractWe report and study the translation of exceptionally high catalytic oxygen electroreduction activities of molybdenum-doped octahedrally shaped PtNi(Mo) nanoparticles from conventional thin-film rotating disk electrode screenings (3.43 +/- 0.35 A mg(pt)(-1) at 0.9 V-RHE) to membrane electrode assembly (MEA)-based single fuel cell tests with sustained Pt mass activities of 0.45 A mg(pt)(-1) at 0.9 V-cell, one of the highest ever reported performances for advanced shaped Pt alloys in real devices. Scanning transmission electron microscopy with energy dispersive X-ray analysis (STEM-EDX) reveals that Mo preferentially occupies the Pt-rich edges and vertices of the element-anisotropic octahedral PtNi particles. Furthermore, by combining in situ wide-angle X-ray spectroscopy, X-ray fluorescence, and STEM-EDX elemental mapping with electrochemical measurements, we finally succeeded to realize high Ni retention in activated PtNiMo nanoparticles even after prolonged potential-cycling stability tests. Stability losses at the anodic potential limits were mainly attributed to the loss of the octahedral particle shape. Extending the anodic potential limits of the tests to the Pt oxidation region induced detectable Ni losses and structural changes. Our study shows on an atomic level how Mo adatoms on the surface impact the Ni surface composition, which, in turn, gives rise to the exceptionally high experimental catalytic ORR reactivity and calls for strategies on how to preserve this particular surface composition to arrive at performance stabilities comparable with state-of-the-art spherical dealloyed Pt core-shell catalysts.en
dc.description.sponsorshipEC/H2020/700127/EU/Integration of Novel Stack Components for Performance, Improved Durability and Lower Cost/INSPIREen
dc.identifier.eissn1530-6992
dc.identifier.issn1530-6984
dc.identifier.pmid31510752
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/16036
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14810
dc.language.isoenen
dc.rights.urihttps://pubs.acs.org/page/policy/authorchoice_termsofuse.htmlen
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.otheroxygen reduction reactionen
dc.subject.otheranisotropyen
dc.subject.othersurface dopingen
dc.subject.otheroctahedral nanoparticlesen
dc.subject.otherPtNi alloyen
dc.subject.othermembrane electrode assemblyen
dc.titleControlling Near-Surface Ni Composition in Octahedral PtNi(Mo) Nanoparticles by Mo Doping for a Highly Active Oxygen Reduction Reaction Catalysten
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1021/acs.nanolett.9b02116en
dcterms.bibliographicCitation.issue10en
dcterms.bibliographicCitation.journaltitleNano Lettersen
dcterms.bibliographicCitation.originalpublishernameAmerican Chemical Society (ACS)en
dcterms.bibliographicCitation.originalpublisherplaceWashingtonen
dcterms.bibliographicCitation.pageend6885en
dcterms.bibliographicCitation.pagestart6876en
dcterms.bibliographicCitation.volume19en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Technische Chemie / Elektrokatalyse - Materialiende
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Technische Chemie / Elektrokatalyse - Materialiende
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 2 of 2
Loading…
Thumbnail Image
Name:
dionigi_etal_2019.pdf
Size:
3.83 MB
Format:
Adobe Portable Document Format
Description:
Article
Loading…
Thumbnail Image
Name:
dionigi_etal_2019_supplement.pdf
Size:
1.77 MB
Format:
Adobe Portable Document Format
Description:
Supporting Information

Collections