An Approach to Ring Resonator Biosensing Assisted by Dielectrophoresis: Design, Simulation and Fabrication

dc.contributor.authorHenriksson, Anders
dc.contributor.authorKasper, Laura
dc.contributor.authorJäger, Matthias
dc.contributor.authorNeubauer, Peter
dc.contributor.authorBirkholz, Mario
dc.date.accessioned2020-11-13T11:58:33Z
dc.date.available2020-11-13T11:58:33Z
dc.date.issued2020-10-22
dc.date.updated2020-11-12T00:53:49Z
dc.description.abstractThe combination of extreme miniaturization with a high sensitivity and the potential to be integrated in an array form on a chip has made silicon-based photonic microring resonators a very attractive research topic. As biosensors are approaching the nanoscale, analyte mass transfer and bonding kinetics have been ascribed as crucial factors that limit their performance. One solution may be a system that applies dielectrophoretic forces, in addition to microfluidics, to overcome the diffusion limits of conventional biosensors. Dielectrophoresis, which involves the migration of polarized dielectric particles in a non-uniform alternating electric field, has previously been successfully applied to achieve a 1000-fold improved detection efficiency in nanopore sensing and may significantly increase the sensitivity in microring resonator biosensing. In the current work, we designed microring resonators with integrated electrodes next to the sensor surface that may be used to explore the effect of dielectrophoresis. The chip design, including two different electrode configurations, electric field gradient simulations, and the fabrication process flow of a dielectrohoresis-enhanced microring resonator-based sensor, is presented in this paper. Finite element method (FEM) simulations calculated for both electrode configurations revealed ∇E2 values above 1017 V2m−3 around the sensing areas. This is comparable to electric field gradients previously reported for successful interactions with larger molecules, such as proteins and antibodies.en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2020en
dc.identifier.eissn2072-666X
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11934
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10825
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitende
dc.subject.otherbiosensoren
dc.subject.othermicroring resonatoren
dc.subject.otherphotonic sensoren
dc.subject.otherdielectrophoresisen
dc.subject.othermass transferen
dc.subject.othermicro fabricationen
dc.titleAn Approach to Ring Resonator Biosensing Assisted by Dielectrophoresis: Design, Simulation and Fabricationen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber954en
dcterms.bibliographicCitation.doi10.3390/mi11110954en
dcterms.bibliographicCitation.issue11en
dcterms.bibliographicCitation.journaltitleMicromachinesen
dcterms.bibliographicCitation.originalpublishernameMDPIen
dcterms.bibliographicCitation.originalpublisherplaceBaselen
dcterms.bibliographicCitation.volume11en
tub.accessrights.dnbfreeen
tub.affiliationFak. 3 Prozesswissenschaften::Inst. Biotechnologie::FG Bioverfahrenstechnikde
tub.affiliation.facultyFak. 3 Prozesswissenschaftende
tub.affiliation.groupFG Bioverfahrenstechnikde
tub.affiliation.instituteInst. Biotechnologiede
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
micromachines-11-00954-v2.pdf
Size:
3.81 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections