Machine learning tools in the analyze of a bike sharing system

dc.contributor.authorBabic, Matej
dc.contributor.authorFragassa, Cristiano
dc.contributor.authorMarinkovic, Dragan
dc.contributor.authorPovh, Janez
dc.date.accessioned2022-07-18T14:26:32Z
dc.date.available2022-07-18T14:26:32Z
dc.date.issued2022
dc.description.abstractAdvanced models, based on artificial intelligence and machine learning, are used here to analyze a bike-sharing system. The specific target was to predict the number of rented bikes in the Nova Mesto (Slovenia) public bike share scheme. For this purpose, the topological properties of the transport network were determined and related to the weather conditions. Pajek software was used and the system behavior during a 30-week period was investigated. Open questions were, for instance: how many bikes are shared in different weather conditions? How the network topology impacts the bike sharing system? By providing a reasonable answer to these and similar questions, several accurate ways of modeling the bike sharing system which account for both topological properties and weather conditions, were developed and used for its optimization.en
dc.identifier.eissn1800-7473
dc.identifier.issn1800-6450
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/17241
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-16020
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitende
dc.subject.othertransportation systems engineeringen
dc.subject.otherbike-sharing systemen
dc.subject.otherartificial intelligenceen
dc.subject.othermachine learningen
dc.subject.otherhybrid intelligent systemsen
dc.subject.otherweather conditionsen
dc.titleMachine learning tools in the analyze of a bike sharing systemen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.24874/IJQR16.02-04en
dcterms.bibliographicCitation.issue2en
dcterms.bibliographicCitation.journaltitleInternational Journal for Quality Researchen
dcterms.bibliographicCitation.originalpublishernameCenter for Quality, Univ. of Montenegroen
dcterms.bibliographicCitation.originalpublisherplacePodgoricaen
dcterms.bibliographicCitation.pageend394en
dcterms.bibliographicCitation.pagestart375en
dcterms.bibliographicCitation.volume16en
tub.accessrights.dnbfreeen
tub.affiliationFak. 5 Verkehrs- und Maschinensysteme>Inst. Mechanik>FG Strukturmechanik und Strukturberechnungde
tub.affiliation.facultyFak. 5 Verkehrs- und Maschinensystemede
tub.affiliation.groupFG Strukturmechanik und Strukturberechnungde
tub.affiliation.instituteInst. Mechanikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Babic_etal_Machine_2022.pdf
Size:
949.45 KB
Format:
Adobe Portable Document Format
Description:
Collections