Deterministically fabricated strain-tunable quantum dot single-photon sources emitting in the telecom O-band

dc.contributor.authorSrocka, N.
dc.contributor.authorMrowiński, P.
dc.contributor.authorGroße, J.
dc.contributor.authorSchmidt, M.
dc.contributor.authorRodt, Sven
dc.contributor.authorReitzenstein, Stephan
dc.date.accessioned2021-01-13T08:06:35Z
dc.date.available2021-01-13T08:06:35Z
dc.date.issued2020-12-01
dc.description.abstractMost quantum communication schemes aim at the long-distance transmission of quantum information. In the quantum repeater concept, the transmission line is subdivided into shorter links interconnected by entanglement distribution via Bell-state measurements to overcome inherent channel losses. This concept requires on-demand single-photon sources with a high degree of multi-photon suppression and high indistinguishability within each repeater node. For a successful operation of the repeater, a spectral matching of remote quantum light sources is essential. We present a spectrally tunable single-photon source emitting in the telecom O-band with the potential to function as a building block of a quantum communication network based on optical fibers. A thin membrane of GaAs embedding InGaAs quantum dots (QDs) is attached onto a piezoelectric actuator via gold thermocompression bonding. Here, the thin gold layer acts simultaneously as an electrical contact, strain transmission medium, and broadband backside mirror for the QD-micromesa. The nanofabrication of the QD-micromesa is based on in situ electron-beam lithography, which makes it possible to integrate pre-selected single QDs deterministically into the center of monolithic micromesa structures. The QD pre-selection is based on distinct single-QD properties, signal intensity, and emission energy. In combination with strain-induced fine tuning, this offers a robust method to achieve spectral resonance in the emission of remote QDs. We show that the spectral tuning has no detectable influence on the multi-photon suppression with g(2)(0) as low as 2%–4% and that the emission can be stabilized to an accuracy of 4 μeV using a closed-loop optical feedback.en
dc.identifier.eissn1077-3118
dc.identifier.issn0003-6951
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12427
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-11269
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc530 Physikde
dc.subject.othernanofabricationen
dc.subject.otheroptical fibersen
dc.subject.otherquantum dotsen
dc.subject.otherelectrical componentsen
dc.subject.othertelecommunications engineeringen
dc.subject.otherelectron-beam lithographyen
dc.subject.otherscanning electron microscopyen
dc.subject.otherquantum informationen
dc.subject.otherlasersen
dc.subject.otheremission spectroscopyen
dc.titleDeterministically fabricated strain-tunable quantum dot single-photon sources emitting in the telecom O-banden
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber224001en
dcterms.bibliographicCitation.doi10.1063/5.0030991en
dcterms.bibliographicCitation.issue22en
dcterms.bibliographicCitation.journaltitleApplied Physics Lettersen
dcterms.bibliographicCitation.originalpublishernameAmerican Institute of Physicsen
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.volume117en
tub.accessrights.dnbdomain*
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Festkörperphysik::AG Optoelektronik und Quantenbauelementede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupAG Optoelektronik und Quantenbauelementede
tub.affiliation.instituteInst. Festkörperphysikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
srocka_etal_2020.pdf
Size:
2.33 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections