Infrared spectroscopy reveals metal-independent carbonic anhydrase activity in crotonyl-CoA carboxylase/reductase

dc.contributor.authorGomez, Aharon
dc.contributor.authorTinzl, Matthias
dc.contributor.authorStoffel, Gabriele
dc.contributor.authorWestedt, Hendrik
dc.contributor.authorGrubmüller, Helmut
dc.contributor.authorErb, Tobias J.
dc.contributor.authorVöhringer-Martinez, Esteban
dc.contributor.authorStripp, Sven T.
dc.date.accessioned2024-04-24T12:51:39Z
dc.date.available2024-04-24T12:51:39Z
dc.date.issued2024-02-29
dc.description.abstractThe conversion of CO2 by enzymes such as carbonic anhydrase or carboxylases plays a crucial role in many biological processes. However, in situ methods following the microscopic details of CO2 conversion at the active site are limited. Here, we used infrared spectroscopy to study the interaction of CO2, water, bicarbonate, and other reactants with β-carbonic anhydrase from Escherichia coli (EcCA) and crotonyl-CoA carboxylase/reductase from Kitasatospora setae (KsCcr), two of the fastest CO2-converting enzymes in nature. Our data reveal that KsCcr possesses a so far unknown metal-independent CA-like activity. Site-directed mutagenesis of conserved active site residues combined with molecular dynamics simulations tracing CO2 distributions in the active site of KsCCr identify an ‘activated’ water molecule forming the hydroxyl anion that attacks CO2 and yields bicarbonate (HCO3−). Computer simulations also explain why substrate binding inhibits the anhydrase activity. Altogether, we demonstrate how in situ infrared spectroscopy combined with molecular dynamics simulations provides a simple yet powerful new approach to investigate the atomistic reaction mechanisms of different enzymes with CO2.en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2024
dc.description.sponsorshipDFG, 273919336, SPP 1927: Iron-Sulfur for Life
dc.description.sponsorshipEC/H2020/637675/EU/combining SYnthetic Biology and chemistry to create novel CO2-fixing enzymes, ORGanelles and ORGanisms/SYBORG
dc.identifier.eissn2041-6539
dc.identifier.issn2041-6520
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/21582
dc.identifier.urihttps://doi.org/10.14279/depositonce-20382
dc.language.isoen
dc.publisherRoyal Society of Chemistry (RSC)
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.subject.ddc500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.subject.otherinfrared spectroscopyen
dc.subject.othercrotonyl-CoA carboxylase/reductaseen
dc.subject.othercarbonic anhydraseen
dc.subject.otherCO2 conversionen
dc.subject.otherEscherichia colien
dc.titleInfrared spectroscopy reveals metal-independent carbonic anhydrase activity in crotonyl-CoA carboxylase/reductase
dc.typeArticle
dc.type.versionpublishedVersion
dcterms.bibliographicCitation.doi10.1039/d3sc04208a
dcterms.bibliographicCitation.issue13
dcterms.bibliographicCitation.journaltitleChemical Science
dcterms.bibliographicCitation.originalpublishernameRoyal Society of Chemistry
dcterms.bibliographicCitation.originalpublisherplaceCambridge
dcterms.bibliographicCitation.pageend4968
dcterms.bibliographicCitation.pagestart4960
dcterms.bibliographicCitation.volume15
dcterms.rightsHolder.referenceCreative-Commons-Lizenz
tub.accessrights.dnbfree
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::N/A (Not Applicable)
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Gomez_etal_Infrared_2024.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.23 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections