Thumbnail Image

Normal line contact of finite-length cylinders

Li, Qiang; Popov, Valentin L.

FG Systemdynamik und Reibungsphysik

In this paper, the normal contact problem between an elastic half-space and a cylindrical body with the axis parallel to the surface of the half-space is solved numerically by using the Boundary Element Method (BEM). The numerical solution is approximated with an analytical equation motivated by an existing asymptotic solution of the corresponding problem. The resulting empirical equation is validated by an extensive parameter study. Based on this solution, we calculate the equivalent MDR-profile, which reproduces the solution exactly in the framework of the Method of Dimensionality Reduction (MDR). This MDR-profile contains in a condensed and easy-to-use form all the necessary information about the found solution and can be exploited for the solution of other related problems (as contact with viscoelastic bodies, tangential contact problem, and adhesive contact problem.) The analytical approximation reproduces numerical results with high precision provided the ratio of length and radius of the cylinder are larger than 5. For thin disks (small length-to-radius ratio), the results are not exact but acceptable for engineering applications.