Solute Incorporation at Oxide–Oxide Interfaces Explains How Ternary Mixed‐Metal Oxide Nanocrystals Support Element‐Specific Anisotropic Growth

dc.contributor.authorGliech, Manuel
dc.contributor.authorGörlin, Mikaela
dc.contributor.authorGocyla, Martin
dc.contributor.authorKlingenhof, Malte
dc.contributor.authorBergmann, Arno
dc.contributor.authorSelve, Sören
dc.contributor.authorSpöri, Camillo
dc.contributor.authorHeggen, Marc
dc.contributor.authorDunin‐Borkowski, Rafal E.
dc.contributor.authorSuntivich, Jin
dc.contributor.authorStrasser, Peter
dc.date.accessioned2020-11-25T14:00:17Z
dc.date.available2020-11-25T14:00:17Z
dc.date.issued2020-01-20
dc.date.updated2020-09-29T04:19:43Z
dc.description.abstractFundamental understanding of anisotropic growth in oxide nanocrystals is crucial to establish new synthesis strategies and to tailor the nanoscale electronic, magnetic, optical, and electrocatalytic properties of these particles. While several growth investigations of metal alloy nanoparticles have been reported, mechanistic studies on the growth of ternary oxide materials are still missing. This work constitutes the first study on the evolution of anisotropic growth of manganese–cobalt oxide nanoparticles by monitoring the elemental distribution and morphology during the particle evolution via scanning transmission electron microscopy–X‐ray spectroscopy. A new growth mechanism based on a “solution‐solid‐solid” pathway for mixed manganese cobalt oxides is revealed. In this mechanism, the MnO seed formation occurs in the first step, followed by the surface Co enrichment, which catalyzes the growth along the <100> directions in all the subsequent growth stages, creating rod, cross‐, and T‐shaped mixed metal oxides, which preferentially expose {100} facets. It is shown that the interrelation of both Mn and Co ions initializes the anisotropic growth and presents the range of validity of the proposed mechanism as well as the shape‐determining effect based on the metal‐to‐metal ratio.en
dc.description.sponsorshipBMBF, 03SF0433A, Verbundvorhaben MEOKATS: Effiziente edelmetallfreie Katalysatorsysteme basierend auf Mangan und Eisen für flexible Meerwasserelektrolyseureen
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2020en
dc.identifier.eissn1616-3028
dc.identifier.issn1616-301X
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12068
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10942
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.otheranisotropic oxideen
dc.subject.otherelemental mappingen
dc.subject.otherfacetted single‐crystalen
dc.subject.othergrowth mechanismen
dc.titleSolute Incorporation at Oxide–Oxide Interfaces Explains How Ternary Mixed‐Metal Oxide Nanocrystals Support Element‐Specific Anisotropic Growthen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber1909054en
dcterms.bibliographicCitation.doi10.1002/adfm.201909054en
dcterms.bibliographicCitation.issue10en
dcterms.bibliographicCitation.journaltitleAdvanced Functional Materialsen
dcterms.bibliographicCitation.originalpublishernameWileyen
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.volume30en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Technische Chemiede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Technische Chemiede
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
ADFM_ADFM201909054.pdf
Size:
2.18 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections