Ion-mediated desorption of asphaltene molecules from carbonate and sandstone structures

dc.contributor.authorAhmadi, Pouyan
dc.contributor.authorAghajanzadeh, Mohammadreza
dc.contributor.authorAsaadian, Hamidreza
dc.contributor.authorKhadivi, Armin
dc.contributor.authorKord, Shahin
dc.date.accessioned2022-07-06T12:35:49Z
dc.date.available2022-07-06T12:35:49Z
dc.date.issued2022-06-28
dc.date.updated2022-06-30T03:15:32Z
dc.description.abstractAs more and more oil recovery scenarios use seawater, the need to identify the possible mechanisms of wettability state changes in oil reservoirs has never been greater. By using molecular dynamics simulations, this study sheds light on the effect of ions common to seawater (Ca2+, K+, Mg2+, Na+, Cl−, HCO3−, SO4 2−) on the affinity between silica and carbonate as the traditional rock types and asphaltene molecules as an important contributing factor of reservoir oil wetness. In the case of carbonate and silica being the reservoir rock types, the measured parameters indicate good agreement with each other, meaning that (HCO3− & SO4 2−) and (Na+ & Cl−) ions reached maximum bonding energies of (25485, 25511, 4096, and −4093 eV, respectively). As with the surface charge density measurements, the results of the non-bonding energies between the individual atomic structures agree with those from the simulation cell. In the presence of a silica surface, the radial distribution function (RDF) results determine that the peak of the maximum value for the distribution of the ions is 4.2. However, these values range from 3 to 6.6, suggesting that different ions perform better under the influence of carbonate rock. As these ions are distributed in the simulation box along with the adsorption domain, the conditions for sequestering asphaltene from the rock surface are made ideal for dissolution and removal. At equal ion strength, measuring the distance between the center of mass of rocks and asphaltene structures reveals a maximum repulsion force of 22.1 Å and a maximum detachment force of 10.4 Å in the presence of SO4 2− and Na+ ions on carbonate and silica surfaces.en
dc.identifier.eissn2053-1591
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/17190
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-15969
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitende
dc.subject.otherwettability stateen
dc.subject.othermolecular dynamic simulationen
dc.subject.otherasphaltene precipitationen
dc.subject.othersmart wateren
dc.subject.otherbonding and non-bonding energyen
dc.subject.othercoulomb interactionen
dc.titleIon-mediated desorption of asphaltene molecules from carbonate and sandstone structuresen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber065101en
dcterms.bibliographicCitation.doi10.1088/2053-1591/ac784fen
dcterms.bibliographicCitation.issue6en
dcterms.bibliographicCitation.journaltitleMaterials Research Expressen
dcterms.bibliographicCitation.originalpublishernameIOPen
dcterms.bibliographicCitation.originalpublisherplaceBristolen
dcterms.bibliographicCitation.volume9en
tub.accessrights.dnbfreeen
tub.affiliationFak. 3 Prozesswissenschaften::Inst. Energietechnikde
tub.affiliation.facultyFak. 3 Prozesswissenschaftende
tub.affiliation.instituteInst. Energietechnikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
mrx_9_6_065101.pdf
Size:
2.6 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections