Electrocatalytic CO2 Reduction on CuOx Nanocubes: Tracking the Evolution of Chemical State, Geometric Structure, and Catalytic Selectivity using Operando Spectroscopy

dc.contributor.authorMöller, Tim
dc.contributor.authorScholten, Fabian
dc.contributor.authorThanh, Trung Ngo
dc.contributor.authorSinev, Ilya
dc.contributor.authorTimoshenko, Janis
dc.contributor.authorWang, Xingli
dc.contributor.authorJovanov, Zarko
dc.contributor.authorGliech, Manuel
dc.contributor.authorRoldan Cuenya, Beatriz
dc.contributor.authorVarela, Ana Sofia
dc.contributor.authorStrasser, Peter
dc.date.accessioned2020-12-16T09:30:01Z
dc.date.available2020-12-16T09:30:01Z
dc.date.issued2020-08-13
dc.date.updated2020-12-07T10:44:54Z
dc.description.abstractThe direct electrochemical conversion of carbon dioxide (CO2) into multi‐carbon (C2+) products still faces fundamental and technological challenges. While facet‐controlled and oxide‐derived Cu materials have been touted as promising catalysts, their stability has remained problematic and poorly understood. Herein we uncover changes in the chemical and morphological state of supported and unsupported Cu2O nanocubes during operation in low‐current H‐Cells and in high‐current gas diffusion electrodes (GDEs) using neutral pH buffer conditions. While unsupported nanocubes achieved a sustained C2+ Faradaic efficiency of around 60 % for 40 h, the dispersion on a carbon support sharply shifted the selectivity pattern towards C1 products. Operando XAS and time‐resolved electron microscopy revealed the degradation of the cubic shape and, in the presence of a carbon support, the formation of small Cu‐seeds during the surprisingly slow reduction of bulk Cu2O. The initially (100)‐rich facet structure has presumably no controlling role on the catalytic selectivity, whereas the oxide‐derived generation of under‐coordinated lattice defects, can support the high C2+ product yields.en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2020en
dc.description.sponsorshipDFG, 390540038, EXC 2008: Unifying Systems in Catalysis "UniSysCat"en
dc.description.sponsorshipBMBF, 033RC004E, CO2Plus - Verbundvorhaben: eEthylen - Nutzung elektrischer Energie aus erneuerbaren Quellen zur elektrochemischen Herstellung von Ethylen aus CO2, Teilvorhaben 5: Charakterisierung und Testung für Synthese-Struktur-Wirkungsbeziehungenen
dc.description.sponsorshipBMBF, 03SF0523C, Verbundvorhaben CO2EKAT: Elektrokatalysatorsystem für stoffliche Energiespeicherung durch gekoppelte Wasserelektrolyse und CO2-Umwandlungen
dc.description.sponsorshipEC/H2020/725915/EU/In situ and Operando Nanocatalysis: Size, Shape and Chemical State Effects/OPERANDOCATen
dc.identifier.eissn1521-3773
dc.identifier.issn1433-7851
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12193
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-11068
dc.language.isoenen
dc.relation.ispartof10.14279/depositonce-12204en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.otherCO2 reductionen
dc.subject.othercopperen
dc.subject.otherelectrocatalysisen
dc.subject.othernanocubesen
dc.subject.otheroperando spectroscopyen
dc.titleElectrocatalytic CO2 Reduction on CuOx Nanocubes: Tracking the Evolution of Chemical State, Geometric Structure, and Catalytic Selectivity using Operando Spectroscopyen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1002/anie.202007136en
dcterms.bibliographicCitation.issue41en
dcterms.bibliographicCitation.journaltitleAngewandte Chemie International Editionen
dcterms.bibliographicCitation.originalpublishernameWileyen
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.pageend17983en
dcterms.bibliographicCitation.pagestart17974en
dcterms.bibliographicCitation.volume59en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Technische Chemiede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Technische Chemiede
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
ANIE_ANIE202007136.pdf
Size:
3.11 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections