Motion‐compensated fat‐water imaging for 3D cardiac MRI at ultra‐high fields

dc.contributor.authorDietrich, Sebastian
dc.contributor.authorAigner, Christoph Stefan
dc.contributor.authorMayer, Johannes
dc.contributor.authorKolbitsch, Christoph
dc.contributor.authorSchulz‐Menger, Jeanette
dc.contributor.authorSchaeffter, Tobias
dc.contributor.authorSchmitter, Sebastian
dc.date.accessioned2022-06-20T10:03:26Z
dc.date.available2022-06-20T10:03:26Z
dc.date.issued2022-01-28
dc.date.updated2022-06-14T23:26:13Z
dc.description.abstractPurpose: Respiratory motion‐compensated (MC) 3D cardiac fat‐water imaging at 7T. Methods: Free‐breathing bipolar 3D triple‐echo gradient‐recalled‐echo (GRE) data with radial phase‐encoding (RPE) trajectory were acquired in 11 healthy volunteers (7M\4F, 21–35 years, mean: 30 years) with a wide range of body mass index (BMI; 19.9–34.0 kg/m2) and volunteer tailored B1+ shimming. The bipolar‐corrected triple‐echo GRE‐RPE data were binned into different respiratory phases (self‐navigation) and were used for the estimation of non‐rigid motion vector fields (MF) and respiratory resolved (RR) maps of the main magnetic field deviations (ΔB0). RR ΔB0 maps and MC ΔB0 maps were compared to a reference respiratory phase to assess respiration‐induced changes. Subsequently, cardiac binned fat‐water images were obtained using a model‐based, respiratory motion‐corrected image reconstruction. Results: The 3D cardiac fat‐water imaging at 7T was successfully demonstrated. Local respiration‐induced frequency shifts in MC ΔB0 maps are small compared to the chemical shifts used in the multi‐peak model. Compared to the reference exhale ΔB0 map these changes are in the order of 10 Hz on average. Cardiac binned MC fat‐water reconstruction reduced respiration induced blurring in the fat‐water images, and flow artifacts are reduced in the end‐diastolic fat‐water separated images. Conclusion: This work demonstrates the feasibility of 3D fat‐water imaging at UHF for the entire human heart despite spatial and temporal B1+ and B0 variations, as well as respiratory and cardiac motion.en
dc.description.sponsorshipDFG, 289347353, GRK 2260: BIOQIC - Biophysikalisch fundierte, quantitative Bildgebung für die klinische Diagnoseen
dc.identifier.eissn1522-2594
dc.identifier.issn0740-3194
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/17124
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-15903
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc610 Medizin und Gesundheitde
dc.subject.other7 Teslaen
dc.subject.otherB0en
dc.subject.otherbody imagingen
dc.subject.otherDixonen
dc.subject.otherfat‐water imagingen
dc.subject.otherparallel transmissionen
dc.subject.otherrespirationen
dc.titleMotion‐compensated fat‐water imaging for 3D cardiac MRI at ultra‐high fieldsen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1002/mrm.29144en
dcterms.bibliographicCitation.issue6en
dcterms.bibliographicCitation.journaltitleMagnetic Resonance in Medicineen
dcterms.bibliographicCitation.originalpublishernameWileyen
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.pageend2636en
dcterms.bibliographicCitation.pagestart2621en
dcterms.bibliographicCitation.volume87en
tub.accessrights.dnbfreeen
tub.affiliationFak. 5 Verkehrs- und Maschinensysteme::Inst. Maschinenkonstruktion und Systemtechnik::FG Medizintechnikde
tub.affiliation.facultyFak. 5 Verkehrs- und Maschinensystemede
tub.affiliation.groupFG Medizintechnikde
tub.affiliation.instituteInst. Maschinenkonstruktion und Systemtechnikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
MRM_MRM29144.pdf
Size:
2.26 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections