Thumbnail Image

Discrete transparent boundary conditions for the Schrödinger equation: Fast calculation, approximation, and stability

Arnold, Anton; Ehrhardt, Matthias; Sofronov, Ivan

Inst. Mathematik

This paper is concerned with transparent boundary conditions (TBCs) for the time-dependent Schrödinger equation in one and two dimensions. Discrete TBCs are introduced in the numerical simulations of whole space problems in order to reduce the computational domain to a finite region. Since the discrete TBC for the Schrödinger equation includes a convolution w.r.t. time with a weakly decaying kernel, its numerical evaluation becomes very costly for large-time simulations. As a remedy we construct approximate TBCs with a kernel having the form of a finite sum-of-exponentials, which can be evaluated in a very efficient recursion. We prove stability of the resulting initial-boundary value scheme, give error estimates for the considered approximation of the boundary condition, and illustrate the efficiency of the proposed method on several examples.