Applicability of Atmospheric Pressure Plasma Jet (APPJ) Discharge for the Reduction in Graphene Oxide Films and Synthesis of Carbon Nanomaterials

dc.contributor.authorVinoth Kumar, Sri Hari Bharath
dc.contributor.authorIbaceta-Jaña, Josefa
dc.contributor.authorMaticuic, Natalia
dc.contributor.authorKowiorski, Krystian
dc.contributor.authorZelt, Matthias
dc.contributor.authorGernert, Ulrich
dc.contributor.authorLipińska, Ludwika
dc.contributor.authorSzyszka, Bernd
dc.contributor.authorSchlatmann, Rutger
dc.contributor.authorHartmann, Uwe
dc.contributor.authorMuydinov, Ruslan
dc.date.accessioned2021-11-08T11:57:07Z
dc.date.available2021-11-08T11:57:07Z
dc.date.issued2021-10-14
dc.date.updated2021-11-04T22:01:35Z
dc.description.abstractAtmospheric pressure plasma jets (APPJ) are widely used in industry for surface cleaning and chemical modification. In the recent past, they have gained more scientific attention especially in the processing of carbon nanomaterials. In this work, a novel power generation technique was applied to realize the stable discharge in N2 (10 vol.% H2) forming gas in ambient conditions. This APPJ was used to reduce solution-processed graphene oxide (GO) thin films and the result was compared with an established and optimized reduction process in a low–pressure capacitively coupled (CCP) radiofrequency (RF) hydrogen (H2) plasma. The reduced GO (rGO) films were investigated by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Effective deoxygenation of GO was observed after a quick 2 s treatment by AAPJ. Further deoxygenation at longer exposure times was found to proceed with the expense of GO–structure integrity. By adding acetylene gas into the same APPJ, carbon nanomaterials on various substrates were synthesized. The carbon materials were characterized by Raman spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) analyses. Fullerene-like particles and graphitic carbon with short carbon nanotubes were detected on Si and Ag surfaces, respectively. We demonstrate that the APPJ tool has obvious potential for the versatile processing of carbon nanomaterials.en
dc.description.sponsorshipBMWi, 0324095H, Verbundvorhaben: speedCIGS - Rechnerunterstützte Optimierung des CIGS-Depositionsprozesses in der industriellen Umsetzung; Teilvorhaben: Transparent leitende Schichten und Perowskit Absorber Schichten für Tandem Konzepte mit CIGS Absorberen
dc.description.sponsorshipBMBF, 03EW0015A, Verbundvorhaben CatLab: Wasserstoff weitergedacht: Dünnschichtkatalysatoren für eine nachhaltige Chemie mit erneuerbaren Energienen
dc.description.sponsorshipBMBF, 03EW0015B, Verbundvorhaben CatLab: Wasserstoff weitergedacht: Dünnschichtkatalysatoren für eine nachhaltige Chemie mit erneuerbaren Energienen
dc.identifier.eissn2311-5629
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/13823
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-12599
dc.language.isoenen
dc.rightsLicensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitende
dc.subject.otheratmospheric plasmaen
dc.subject.othercarbon nanomaterialsen
dc.subject.othergraphene oxideen
dc.subject.otherplasma treatmenten
dc.titleApplicability of Atmospheric Pressure Plasma Jet (APPJ) Discharge for the Reduction in Graphene Oxide Films and Synthesis of Carbon Nanomaterialsen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber71en
dcterms.bibliographicCitation.doi10.3390/c7040071en
dcterms.bibliographicCitation.issue4en
dcterms.bibliographicCitation.journaltitleC – Journal of Carbon Researchen
dcterms.bibliographicCitation.originalpublishernameMDPIen
dcterms.bibliographicCitation.originalpublisherplaceBaselen
dcterms.bibliographicCitation.volume7en
tub.accessrights.dnbfreeen
tub.affiliationFak. 4 Elektrotechnik und Informatik>Inst. Hochfrequenz- und Halbleiter-Systemtechnologien>FG Technologie für Dünnschicht-Bauelementede
tub.affiliation.facultyFak. 4 Elektrotechnik und Informatikde
tub.affiliation.groupFG Technologie für Dünnschicht-Bauelementede
tub.affiliation.instituteInst. Hochfrequenz- und Halbleiter-Systemtechnologiende
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
carbon-07-00071.pdf
Size:
3.01 MB
Format:
Adobe Portable Document Format
Description:
Collections