Quantum Dot Molecule Devices with Optical Control of Charge Status and Electronic Control of Coupling

dc.contributor.authorBopp, Frederik
dc.contributor.authorRojas, Jonathan
dc.contributor.authorRevenga, Natalia
dc.contributor.authorRiedl, Hubert
dc.contributor.authorSbresny, Friedrich
dc.contributor.authorBoos, Katarina
dc.contributor.authorSimmet, Tobias
dc.contributor.authorAhmadi, Arash
dc.contributor.authorGershoni, David
dc.contributor.authorKasprzak, Jacek
dc.contributor.authorLudwig, Arne
dc.contributor.authorReitzenstein, Stephan
dc.contributor.authorWieck, Andreas
dc.contributor.authorReuter, Dirk
dc.contributor.authorMüller, Kai
dc.contributor.authorFinley, Jonathan J.
dc.date.accessioned2022-11-09T14:25:47Z
dc.date.available2022-11-09T14:25:47Z
dc.date.issued2022-08-25
dc.description.abstractTunnel-coupled pairs of optically active quantum dots—quantum dot molecules (QDMs)—offer the possibility to combine excellent optical properties such as strong light-matter coupling with two-spin singlet–triplet (S-T0) qubits having extended coherence times. The S-T0 basis formed using two spins is inherently protected against electric and magnetic field noise. However, since a single gate voltage is typically used to stabilize the charge occupancy of the dots and control the inter-dot orbital couplings, operation of the S-T0 qubits under optimal conditions remains challenging. Here, an electric field tunable QDM that can be optically charged with one (1h) or two holes (2h) on demand is presented. A four-phase optical and electric field control sequence facilitates the sequential preparation of the 2h charge state and subsequently allows flexible control of the inter-dot coupling. Charges are loaded via optical pumping and electron tunnel ionization. One- and two-hole charging efficiencies of (93.5 ± 0.8)% and (80.5 ± 1.3)% are achieved, respectively. Combining efficient charge state preparation and precise setting of inter-dot coupling allows for the control of few-spin qubits, as would be required for the on-demand generation of 2D photonic cluster states or quantum transduction between microwaves and photons.en
dc.description.sponsorshipBMBF, 16KIS0874, Verbundprojekt: Q.Link.Extension - Q.Link.X -; Teilvorhaben: Gekoppelte Halbleiter-Quantenpunkte für einen modularen Quantenrepeater: elektrische Kontrolle, Kohärenz und Spektroskopie
dc.description.sponsorshipBMBF, 16KISQ027, Verbundprojekt: QR.X - Quantenrepeater.Link - QR.X -; Teilvorhaben: Few-Spin-QD-Nanostrukturen für messbasierte Quanten-Repeater Links
dc.description.sponsorshipBMBF, 16KISQ014, Verbundprojekt: Quantenrepeater.Link - QR.X -; Teilvorhaben: Spektralkontrollierbare Quantenpunktmolekül-Bauelemente und verschränkte Photonenpaarquellen mit on-chip Faserkopplung
dc.description.sponsorshipBMBF, 16KISQ012, Verbundprojekt: QR.X - Quantenrepeater.Link - QR.X -; Teilvorhaben: Festkörperbasierte Schlüsselbauelemente für die Quantenkommunikation
dc.description.sponsorshipBMBF, 16KISQ009, Verbundprojekt: QR.X - Quantenrepeater.Link - QR.X -; Teilvorhaben: Molekularstrahlepitaktisches Wachstum von p-i-n-Dioden mit Quantenpunkt-Molekül-Emittern
dc.description.sponsorshipEC/H2020/862035/EU/Many-photon quantum entanglement/QLUSTER
dc.description.sponsorshipDFG, 390814868, EXC 2111: Munich Center for Quantum Science and Technology (MCQST)
dc.description.sponsorshipBMBF, 13N14846, Modulare Photonische Quantentechnologien (MOQUA)
dc.identifier.eissn2511-9044
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/17648
dc.identifier.urihttps://doi.org/10.14279/depositonce-16432
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530 Physikde
dc.subject.othercharge state controlen
dc.subject.otherelectron tunnelingen
dc.subject.otherhole storageen
dc.subject.otherinter-dot couplingen
dc.subject.otheroptical chargingen
dc.subject.otherquantum dot moleculesen
dc.titleQuantum Dot Molecule Devices with Optical Control of Charge Status and Electronic Control of Couplingen
dc.typeArticle
dc.type.versionpublishedVersion
dcterms.bibliographicCitation.articlenumber2200049
dcterms.bibliographicCitation.doi10.1002/qute.202200049
dcterms.bibliographicCitation.issue10
dcterms.bibliographicCitation.journaltitleAdvanced Quantum Technologies
dcterms.bibliographicCitation.originalpublishernameWiley
dcterms.bibliographicCitation.originalpublisherplaceNew York, NY
dcterms.bibliographicCitation.volume5
tub.accessrights.dnbfree
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Festkörperphysik::AG Optoelektronik und Quantenbauelemente
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Bopp_etal_Quantum_2022.pdf
Size:
1.79 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.23 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections