Mathematical modeling of the geometrical differences between the weld end crater and the steady-state weld pool

dc.contributor.authorArtinov, Antoni
dc.contributor.authorKarkhin, Victor
dc.contributor.authorBachmann, Marcel
dc.contributor.authorRethmeier, Michael
dc.date.accessioned2020-06-03T15:38:35Z
dc.date.available2020-06-03T15:38:35Z
dc.date.issued2020-04-28
dc.descriptionThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in A. Artinov et al., Journal of Laser Applications 32, 022024 (2020) and may be found at https://doi.org/10.2351/7.0000068.en
dc.description.abstractThe geometrical characteristics of the weld end crater are commonly used as a means of validating numerical results in welding simulations. In this paper, an analytical model is developed for calculating the cooling stage of the welding process after the moving energy source is turned off. Solutions for various combinations of heat sources and heated bodies are found. It is shown that after turning off the energy source, additional melting of the base material in the longitudinal direction may occur due to the overheated liquid metal. The developed technique is applied to complete-penetration keyhole laser beam welding of 2 mm thick austenitic stainless-steel plate 316L at a welding speed of 20 mm s−1 and a laser power of 2.3 kW. The results show a theoretical increase in the weld end crater length of up to 19% compared to the length of the steady-state weld pool. It is found that at the moment of switch off, the weld end crater center, where solidification of the liquid metal ends, is shifted from the heat source axis toward the weld pool tail. The solidification rate and the direction of crystallization of the molten material during the welding process and those in the weld end crater differ significantly. A good agreement between the computational results and the welding experiments is achieved.en
dc.identifier.eissn1938-1387
dc.identifier.issn1042-346X
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11257
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10145
dc.language.isoen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc600 Technik, Technologiede
dc.subject.ddc530 Physikde
dc.subject.otherweld end crateren
dc.subject.othersteady-state weld poolen
dc.subject.othermathematical modelingen
dc.subject.othersolidificationen
dc.subject.otherlaser beam weldingen
dc.titleMathematical modeling of the geometrical differences between the weld end crater and the steady-state weld poolen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber22024
dcterms.bibliographicCitation.doi10.2351/7.0000068
dcterms.bibliographicCitation.issue2
dcterms.bibliographicCitation.journaltitleJournal of Laser Applicationsen
dcterms.bibliographicCitation.originalpublishernameLaser Institute of America (LIA), American Institute of Physics (AIP)en
dcterms.bibliographicCitation.originalpublisherplaceOrlandoen
dcterms.bibliographicCitation.volume32
tub.accessrights.dnbdomain*
tub.affiliationFak. 5 Verkehrs- und Maschinensysteme::Inst. Werkzeugmaschinen und Fabrikbetrieb::FG Fügetechnikde
tub.affiliation.facultyFak. 5 Verkehrs- und Maschinensystemede
tub.affiliation.groupFG Fügetechnikde
tub.affiliation.instituteInst. Werkzeugmaschinen und Fabrikbetriebde
tub.publisher.universityorinstitutionTechnische Universität Berlinde

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
artinov_etal_2020.pdf
Size:
1.78 MB
Format:
Adobe Portable Document Format

Collections