Thumbnail Image

Distributed Mega-Datasets: The Need for Novel Computing Primitives

Semmler, Niklas; Smaragdakis, Georgios; Feldmann, Anja

With the ongoing digitalization, an increasing number of sensors is becoming part of our digital infrastructure. These sensors produce highly, even globally, distributed data streams. The aggregate data rate of these streams far exceeds local storage and computing capabilities. Yet, for radical new services (e.g., predictive maintenance and autonomous driving), which depend on various control loops, this data needs to be analyzed in a timely fashion. In this position paper, we outline a system architecture that can effectively handle distributed mega-datasets using data aggregation. Hereby, we point out two research challenges: The need for (1) novel computing primitives that allow us to aggregate data at scale across multiple hierarchies (i.e., time and location) while answering a multitude of a priori unknown queries, and (2) transfer optimizations that enable rapid local and global decision making.
Published in: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), 10.1109/ICDCS.2019.00167, Institute of Electrical and Electronics Engineers (IEEE)
  • © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.