Hybrid Artificial Intelligence System for the Design of Highly-Automated Production Systems

dc.contributor.authorHagemann, Simon
dc.contributor.authorSünnetcioglu, Atakan
dc.contributor.authorStark, Rainer
dc.date.accessioned2020-09-18T14:38:20Z
dc.date.available2020-09-18T14:38:20Z
dc.date.issued2019-01-25
dc.description.abstractThe automated design of production systems is a young field of research which has not been widely explored by industry nor research in recent decades. Currently, the effort spent in production system design is increasing significantly in automotive industry due to the number of product variants and product complexity. Intelligent methods can support engineers in repetitive tasks and give them more opportunity to focus on work which requires their core competencies. This paper presents a novel artificial intelligence methodology that automatically generates initial production system configurations based on real industrial scenarios in the automotive field of body-in-white production. The hybrid methodology reacts flexibly against data sets of different content and has been implemented in a software prototype.en
dc.identifier.eissn2351-9789
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11695
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10583
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitende
dc.subject.otherartificial intelligenceen
dc.subject.othermachine learningen
dc.subject.otherautomotiveen
dc.subject.otherbody-in-whiteen
dc.subject.otherproduction system designen
dc.subject.otherdata analyticsen
dc.subject.otherpattern recognitionen
dc.subject.otherprocess automatizationen
dc.subject.otherroboticsen
dc.subject.otherindustrial data qualityen
dc.titleHybrid Artificial Intelligence System for the Design of Highly-Automated Production Systemsen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1016/j.promfg.2018.12.026en
dcterms.bibliographicCitation.journaltitleProcedia Manufacturingen
dcterms.bibliographicCitation.originalpublishernameElsevieren
dcterms.bibliographicCitation.originalpublisherplaceAmsterdam [u.a.]en
dcterms.bibliographicCitation.pageend166en
dcterms.bibliographicCitation.pagestart160en
dcterms.bibliographicCitation.volume28en
tub.accessrights.dnbfreeen
tub.affiliationFak. 5 Verkehrs- und Maschinensysteme::Inst. Werkzeugmaschinen und Fabrikbetrieb::FG Industrielle Informationstechnikde
tub.affiliation.facultyFak. 5 Verkehrs- und Maschinensystemede
tub.affiliation.groupFG Industrielle Informationstechnikde
tub.affiliation.instituteInst. Werkzeugmaschinen und Fabrikbetriebde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
hagemann_etal_2019.pdf
Size:
542.68 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections