Transitions of electrons and holes drive diffusion in crystals, glasses and melts

dc.contributor.authorHoffmann, H.‐J.
dc.date.accessioned2021-02-25T11:22:57Z
dc.date.available2021-02-25T11:22:57Z
dc.date.issued2020-12-17
dc.date.updated2021-02-22T12:32:06Z
dc.description.abstractDiffusion of atoms or molecules (generally: particles) is driven by differences and gradients of the chemical potential of the particles in their accessible space. If the difference of the chemical potential is due to differences of concentrations alone, one arrives at the diffusion equations of Fick. The diffusion coefficients are described in known models by vibrations of atoms in condensed matter which cause the exchange of preferentially neutral particles with neighbouring particles, impurities, interstitial places and vacancies near or on surfaces, grain boundaries, dislocation lines and in the homogeneous bulk. The rates of electronic transitions, however, increase also in melts and solids of chemically bonded particles with increasing temperature. Such transitions cause large fluctuating deviations of the local energy, the charge distribution and the local chemical and electrical potentials. The fluctuating deviations interact with the core ions and drive particles to interchange. This mechanism that supplements the known mechanisms of diffusion has not yet found adequate attention in the literature until now. Foundations, experimental results, evidence and consequences for diffusion are discussed.en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2020en
dc.identifier.eissn1521-4052
dc.identifier.issn0933-5137
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12677
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-11475
dc.language.isoenen
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
dc.rights
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc660 Chemische Verfahrenstechnikde
dc.subject.otherdiffusion in solidsen
dc.subject.othermechanism of diffusionen
dc.subject.otherdiffusion coefficienten
dc.subject.otherself-diffusionen
dc.subject.otherdiffusion and transitions of electrons and holesen
dc.subject.otherDiffusion in Festkörpernde
dc.subject.otherDiffusionsmechanismusde
dc.subject.otherDiffusionskoeffizientde
dc.subject.otherSelbstdiffusionde
dc.subject.otherDiffusion und Übergänge von Elektronen und Löchernde
dc.titleTransitions of electrons and holes drive diffusion in crystals, glasses and meltsen
dc.title.translatedÜbergänge von Elektronen und Löchern als Antrieb der Diffusion in Kristallen, Gläsern und Schmelzende
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1002/mawe.201800158en
dcterms.bibliographicCitation.issue12en
dcterms.bibliographicCitation.journaltitleMaterialwissenschaft und Werkstofftechniken
dcterms.bibliographicCitation.originalpublishernameWileyen
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.pageend1614en
dcterms.bibliographicCitation.pagestart1578en
dcterms.bibliographicCitation.volume51en
tub.accessrights.dnbfreeen
tub.affiliationFak. 3 Prozesswissenschaften>Inst. Werkstoffwissenschaften und -technologien>FG Glaswerkstoffede
tub.affiliation.facultyFak. 3 Prozesswissenschaftende
tub.affiliation.groupFG Glaswerkstoffede
tub.affiliation.instituteInst. Werkstoffwissenschaften und -technologiende
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
MAWE_MAWE201800158.pdf
Size:
3.82 MB
Format:
Adobe Portable Document Format
Description:
Collections