Reviving Oxygen Evolution Electrocatalysis of Bulk La–Ni Intermetallics via Gaseous Hydrogen Engineering

dc.contributor.authorChen, Ziliang
dc.contributor.authorYang, Hongyuan
dc.contributor.authorMebs, Stefan
dc.contributor.authorDau, Holger
dc.contributor.authorDriess, Matthias
dc.contributor.authorWang, Zhaowu
dc.contributor.authorKang, Zhenhui
dc.contributor.authorMenezes, Prashanth W.
dc.date.accessioned2023-05-16T14:18:30Z
dc.date.available2023-05-16T14:18:30Z
dc.date.issued2023-02-01
dc.date.updated2023-04-19T22:51:24Z
dc.description.abstractA hydrogen processing strategy is developed to enable bulk LaNi5 to attain high activity and long‐term stability toward the electrocatalytic oxygen evolution reaction (OER). By a combination of in situ Raman and quasi in situ X‐ray absorption (XAS) spectra, secondary‐electron‐excited scanning transmission electron microscopy (STEM) patterns as well as the Rietveld method and density functional theory (DFT) calculations, it is discovered that hydrogen‐induced lattice distortion, grain refinement, and particle cracks dictate the effective reconstruction of the LaNi5 surface into a porous hetero‐nanoarchitecture composed of uniformly confined active γ‐NiOOH nanocrystals by La(OH)3 layer in the alkaline OER process. This significantly optimizes the charge transfer, structural integrity, active‐site exposure, and adsorption energy toward the reaction intermediates. Benefiting from these merits, the overpotential (322 mV) at 100 mA cm−2 for the hydrogen‐processed OER catalyst deposited on nickel foam is reduced by 104 mV as compared to the original phase. Notably, it exhibits remarkable stability for 10 days at an industrial‐grade current density of more than 560 mA cm−2 in alkaline media.en
dc.description.sponsorshipBMBF, 03EW0015A, Verbundvorhaben CatLab: Wasserstoff weitergedacht: Dünnschichtkatalysatoren für eine nachhaltige Chemie mit erneuerbaren Energien
dc.description.sponsorshipBMBF, 03EW0015B, Verbundvorhaben CatLab: Wasserstoff weitergedacht: Dünnschichtkatalysatoren für eine nachhaltige Chemie mit erneuerbaren Energien
dc.description.sponsorshipBMBF, 03HY105C, Verbundvorhaben H2Giga_QT1.1: Projektverbund zur optimierten Materialentwicklung für die technische H2-Erzeugung durch verbesserte Sauerstoffelektroden
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2022
dc.identifier.eissn1521-4095
dc.identifier.issn0935-9648
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/18880
dc.identifier.urihttps://doi.org/10.14279/depositonce-17685
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.subject.otherheterostructures
dc.subject.otherhydrogen storage intermetallics
dc.subject.otheroxygen evolution reaction
dc.subject.otherphase reconstruction
dc.subject.otherrare‐earth metals
dc.titleReviving Oxygen Evolution Electrocatalysis of Bulk La–Ni Intermetallics via Gaseous Hydrogen Engineeringen
dc.typeArticle
dc.type.versionpublishedVersion
dcterms.bibliographicCitation.articlenumber2208337
dcterms.bibliographicCitation.doi10.1002/adma.202208337
dcterms.bibliographicCitation.issue11
dcterms.bibliographicCitation.journaltitleAdvanced Materialsen
dcterms.bibliographicCitation.originalpublishernameWiley
dcterms.bibliographicCitation.originalpublisherplaceNew York, NY
dcterms.bibliographicCitation.volume35
dcterms.rightsHolder.referenceCreative-Commons-Lizenz
tub.accessrights.dnbfree
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Metallorganische Chemie und Anorganische Materialien
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
ADMA_ADMA202208337.pdf
Size:
3.36 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections