Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt-zinc oxide catalysts for efficient oxidation of water

dc.contributor.authorMenezes, Prashanth W.
dc.contributor.authorIndra, Arindam
dc.contributor.authorBergmann, Arno
dc.contributor.authorChernev, Petko
dc.contributor.authorWalter, Carsten
dc.contributor.authorDau, Holger
dc.contributor.authorStrasser, Peter
dc.contributor.authorDrieß, Matthias
dc.date.accessioned2017-10-24T07:15:28Z
dc.date.available2017-10-24T07:15:28Z
dc.date.issued2016
dc.descriptionDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.de
dc.descriptionThis publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.en
dc.description.abstractThe fabrication and design of earth-abundant and high-performance catalysts for the oxygen evolution reaction (OER) are very crucial for the development and commercialization of sustainable energy conversion technologies. Although spinel catalysts have been widely explored for the electrochemical oxygen evolution reaction (OER), the role of two geometrical sites that influence their activities has not been well established so far. Here, we present more effective cobalt-zinc oxide catalysts for the OER than 'classical' Co3O4. Interestingly, the significantly higher catalytic activity of ZnCo2O4 than that of Co3O4 is somewhat surprising since both crystallize in the spinel-type structure. The reasons for the latter remarkable difference of ZnCo2O4 and Co3O4 could be deduced from structure-activity relationships of the bulk and near-surface of the catalysts using comprehensive electrochemical, microscopic and spectroscopic techniques with a special emphasis on the different roles of the coordination environment of metal ions (octahedral vs. tetrahedral sites) in the spinel lattice. The vital factors influencing the catalytic activity of ZnCo2O4 over Co3O4 could be directly attributed to the higher amount of accessible octahedral Co3+ sites induced by the preferential loss of zinc ions from the surface of the ZnCo2O4 catalyst. The enhanced catalytic activity is accompanied by a larger density of metal vacancies, defective sites and hydroxylation. The results obtained here clearly demonstrate how a surface structural modification and generation of defects of catalysts can enhance their OER performance.en
dc.description.sponsorshipDFG, EXC 314, Unifying Concepts in Catalysisen
dc.description.sponsorshipBMBF, 03IS2071D, Light2Hydrogenen
dc.identifier.eissn2050-7496
dc.identifier.issn2050-7488
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/6901
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-6240
dc.language.isoen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.ddc530 Physikde
dc.titleUncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt-zinc oxide catalysts for efficient oxidation of wateren
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1039/c6ta03644a
dcterms.bibliographicCitation.issue25
dcterms.bibliographicCitation.journaltitleJournal of materials chemistry : A, Materials for energy and sustainabilityen
dcterms.bibliographicCitation.originalpublishernameRoyal Society of Chemistryde
dcterms.bibliographicCitation.originalpublisherplaceCambridgede
dcterms.bibliographicCitation.pageend10022
dcterms.bibliographicCitation.pagestart10014
dcterms.bibliographicCitation.volume4
tub.accessrights.dnbdomain
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Metallorganische Chemie und Anorganische Materialiende
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Technische Chemiede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Metallorganische Chemie und Anorganische Materialiende
tub.affiliation.groupFG Technische Chemiede
tub.affiliation.instituteInst. Chemiede
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
c6ta03644a.pdf
Size:
858.07 KB
Format:
Adobe Portable Document Format

Collections