Present-day Mars' seismicity predicted from 3-D thermal evolution models of interior dynamics

dc.contributor.authorPlesa, A.-C.
dc.contributor.authorKnapmeyer, M.
dc.contributor.authorGolombek, M.
dc.contributor.authorBreuer, D.
dc.contributor.authorGrott, M.
dc.contributor.authorKawamura, T.
dc.contributor.authorLognonné, P.
dc.contributor.authorTosi, Nicola
dc.contributor.authorWeber, R. C.
dc.date.accessioned2020-01-27T12:38:36Z
dc.date.available2020-01-27T12:38:36Z
dc.date.issued2018-02-27
dc.description©2018. American Geophysical Unionen
dc.description.abstractThe Interior Exploration using Seismic Investigations, Geodesy and Heat Transport mission, to be launched in 2018, will perform a comprehensive geophysical investigation of Mars in situ. The Seismic Experiment for Interior Structure package aims to detect global and regional seismic events and in turn offer constraints on core size, crustal thickness, and core, mantle, and crustal composition. In this study, we estimate the present‐day amount and distribution of seismicity using 3‐D numerical thermal evolution models of Mars, taking into account contributions from convective stresses as well as from stresses associated with cooling and planetary contraction. Defining the seismogenic lithosphere by an isotherm and assuming two end‐member cases of 573 K and the 1073 K, we determine the seismogenic lithosphere thickness. Assuming a seismic efficiency between 0.025 and 1, this thickness is used to estimate the total annual seismic moment budget, and our models show values between 5.7 × 1016 and 3.9 × 1019 Nm.en
dc.identifier.eissn1944-8007
dc.identifier.issn0094-8276
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/10634
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-9561
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc550 Geowissenschaftende
dc.subject.otherInSighten
dc.subject.otherseismicityen
dc.subject.otherthermal evolutionen
dc.subject.otherMarsen
dc.subject.otherinterior dynamicsen
dc.titlePresent-day Mars' seismicity predicted from 3-D thermal evolution models of interior dynamicsen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1002/2017GL076124en
dcterms.bibliographicCitation.issue6en
dcterms.bibliographicCitation.journaltitleGeophysical Research Lettersen
dcterms.bibliographicCitation.originalpublishernameWiley ; American Geophysical Union (AGU)en
dcterms.bibliographicCitation.originalpublisherplaceHoboken, NJen
dcterms.bibliographicCitation.pageend2589en
dcterms.bibliographicCitation.pagestart2580en
dcterms.bibliographicCitation.volume45en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Zentrum für Astronomie und Astrophysikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.instituteZentrum für Astronomie und Astrophysikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Plesa_et_al-2018-Geophysical_Research_Letters.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections