Enhancing manual flight precision and reducing pilot workload using a new manual control augmentation system for energy angle

dc.contributor.authorSchreiter, Karolin
dc.contributor.authorMüller, Simon
dc.contributor.authorLuckner, Robert
dc.contributor.authorManzey, Dietrich
dc.date.accessioned2018-05-25T12:18:07Z
dc.date.available2018-05-25T12:18:07Z
dc.date.issued2017
dc.description.abstractWith rising demands on flight precision and more complex flight trajectories, pilots' workload during manual flight is increasing. This is especially the case for thrust and spoiler control during approach and landing. The presented nxControl system enables pilots to manually control the longitudinal load factor nx instead of engine parameters and spoiler deflections. This load factor is equivalent to total energy angle and is directly influenced by engine thrust and aerodynamic drag. The nxController complements existing control augmentation systems such as the fly-by-wire control laws of today's commercial airliners. It aims at higher precision with lower workload during manual flight. The controller input can be set and monitored by an adapted human-machine interface consisting of a thrust-lever-like inceptor and additional display elements to enhance energy awareness. This paper presents the nxControl system with focus on the command control system and an evaluation study with 24 airline pilots in a research flight simulator. The task was a demanding and steep approach with required navigation performance RNP 0.1 in a mountainous area. The results show higher precision and lower workload with the nxControl system despite minimal amount of training.en
dc.identifier.urihttps://depositonce.tu-berlin.de//handle/11303/7847
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-7007
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitende
dc.subject.othernxControl systemen
dc.subject.othermanual flighten
dc.subject.otherflight control systemen
dc.subject.otheraugmented flight controlen
dc.subject.otherhuman machine interfaceen
dc.subject.othertotal energy angleen
dc.subject.otherflight simulator studyen
dc.subject.otherworkloaden
dc.subject.otherflight precisionen
dc.subject.othersteep RNP approachen
dc.titleEnhancing manual flight precision and reducing pilot workload using a new manual control augmentation system for energy angleen
dc.typeConference Objecten
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.2514/6.2017-1026en
dcterms.bibliographicCitation.originalpublishernameAmerican Institute of Aeronautics and Astronauticsen
dcterms.bibliographicCitation.originalpublisherplaceRestonen
dcterms.bibliographicCitation.proceedingstitleAIAA Guidance, Navigation, and Control Conference. AIAA SciTech Forumen
dcterms.bibliographicCitation.volume2017-1026en
tub.accessrights.dnbfreeen
tub.affiliationFak. 5 Verkehrs- und Maschinensysteme>Inst. Luft- und Raumfahrt>FG Flugmechanik, Flugregelung und Aeroelastizitätde
tub.affiliationFak. 5 Verkehrs- und Maschinensysteme>Inst. Psychologie und Arbeitswissenschaft>FG Arbeits-, Ingenieur- und Organisationspsychologiede
tub.affiliation.facultyFak. 5 Verkehrs- und Maschinensystemede
tub.affiliation.facultyFak. 5 Verkehrs- und Maschinensystemede
tub.affiliation.groupFG Flugmechanik, Flugregelung und Aeroelastizitätde
tub.affiliation.groupFG Arbeits-, Ingenieur- und Organisationspsychologiede
tub.affiliation.instituteInst. Luft- und Raumfahrtde
tub.affiliation.instituteInst. Psychologie und Arbeitswissenschaftde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
2017_schreiter_et-al.pdf
Size:
2.37 MB
Format:
Adobe Portable Document Format
Description:
Collections