Unsupervised Remote Sensing Image Retrieval Using Probabilistic Latent Semantic Hashing
dc.contributor.author | Fernandez-Beltran, Ruben | |
dc.contributor.author | Demir, Begüm | |
dc.contributor.author | Pla, Filiberto | |
dc.contributor.author | Plaza, Antonio | |
dc.date.accessioned | 2020-11-18T10:20:10Z | |
dc.date.available | 2020-11-18T10:20:10Z | |
dc.date.issued | 2020-02-06 | |
dc.description.abstract | Unsupervised hashing methods have attracted considerable attention in large-scale remote sensing (RS) image retrieval, due to their capability for massive data processing with significantly reduced storage and computation. Although existing unsupervised hashing methods are suitable for operational applications, they exhibit limitations when accurately modeling the complex semantic content present in RS images using binary codes (in an unsupervised manner). To address this problem, in this letter, we introduce a novel unsupervised hashing method that takes advantage of the generative nature of probabilistic topic models to encapsulate the hidden semantic patterns of the data into the final binary representation. Specifically, we introduce a new probabilistic latent semantic hashing (pLSH) model to effectively learn the hash codes using three main steps: 1) data grouping, where the input RS archive is clustered into several groups; 2) topic computation, where the pLSH model is used to uncover highly descriptive hidden patterns from each group; and 3) hash code generation, where the data probability distributions are thresholded to generate the final binary codes. Our experimental results, obtained on two benchmark archives, reveal that the proposed method significantly outperforms state-of-the-art unsupervised hashing methods. | en |
dc.description.sponsorship | EC/H2020/734541/EU/Tools for Mapping Human Exposure to Risky Environmental conditions by means of Ground and Earth Observation Data/EOXPOSURE | en |
dc.description.sponsorship | EC/H2020/759764/EU/Accurate and Scalable Processing of Big Data in Earth Observation/BigEarth | en |
dc.identifier.eissn | 1558-0571 | |
dc.identifier.issn | 1545-598X | |
dc.identifier.uri | https://depositonce.tu-berlin.de/handle/11303/11992 | |
dc.identifier.uri | http://dx.doi.org/10.14279/depositonce-10872 | |
dc.language.iso | en | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.ddc | 006 Spezielle Computerverfahren | de |
dc.subject.other | hash codes | en |
dc.subject.other | image retrieval | en |
dc.subject.other | probabilistic topic models | en |
dc.subject.other | remote sensing | en |
dc.subject.other | RS | en |
dc.subject.other | unsupervised hashing | en |
dc.title | Unsupervised Remote Sensing Image Retrieval Using Probabilistic Latent Semantic Hashing | en |
dc.type | Article | en |
dc.type.version | acceptedVersion | en |
dcterms.bibliographicCitation.doi | 10.1109/LGRS.2020.2969491 | en |
dcterms.bibliographicCitation.journaltitle | IEEE Geoscience and Remote Sensing Letters | en |
dcterms.bibliographicCitation.originalpublishername | Institute of Electrical and Electronics Engineers (IEEE) | en |
dcterms.bibliographicCitation.originalpublisherplace | New York, NY | en |
tub.accessrights.dnb | free | en |
tub.affiliation | Fak. 4 Elektrotechnik und Informatik::Inst. Technische Informatik und Mikroelektronik::FG Remote Sensing Image Analysis Group | de |
tub.affiliation.faculty | Fak. 4 Elektrotechnik und Informatik | de |
tub.affiliation.group | FG Remote Sensing Image Analysis Group | de |
tub.affiliation.institute | Inst. Technische Informatik und Mikroelektronik | de |
tub.publisher.universityorinstitution | Technische Universität Berlin | en |
Files
Original bundle
1 - 1 of 1
Loading…
- Name:
- Fernandez-Beltran_etal_2020.pdf
- Size:
- 3.93 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted manuscript
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 5.75 KB
- Format:
- Item-specific license agreed upon to submission
- Description: