Elongational viscosity and brittle fracture of bidisperse blends of a high and several low molar mass polystyrenes

dc.contributor.authorWagner, Manfred H.
dc.contributor.authorNarimissa, Esmaeil
dc.contributor.authorShahid, Taisir
dc.date.accessioned2021-12-13T07:47:37Z
dc.date.available2021-12-13T07:47:37Z
dc.date.issued2021-10-22
dc.description.abstractElongational viscosity data of four well-characterized blends consisting of 10% mass fraction of monodisperse polystyrene PS-820k (molar mass of 820 kg/mol) and 90% matrix polystyrenes with a molar mass of 8.8, 23, 34, and 73 kg/mol, respectively, as reported by Shahid et al. Macromolecules 52: 2521–2530, 2019 are analyzed by the extended interchain pressure (EIP) model including the effects of finite chain extensibility and filament rupture. Except for the linear-viscoelastic contribution of the matrix, the elongational viscosity of the blends is mainly determined by the high molar mass component PS-820k at elongation rates when no stretching of the lower molar mass matrix chains is expected. The stretching of the long chains is shown to be widely independent of the molar mass of the matrix reaching from non-entangled oligomeric styrene (8.8 kg/mol) to well-entangled polystyrene (73kg/mol). Quantitative agreement between data and model can be obtained when taking the interaction of the long chains of PS-820k with the shorter matrix chains of PS-23k, PS-34k, and PS-73k into account. The interaction of long and short chains leads to additional entanglements along the long chains of PS-820k, which slow down relaxation of the long chains, as clearly seen in the linear-viscoelastic behavior. According to the EIP model, an increased number of entanglements also lead to enhanced interchain pressure, which limits maximal stretch. The reduced maximal stretch of the long chains due to entanglements of long chains with shorter matrix chains is quantified by introducing an effective polymer fraction of the long chains, which increases with the increasing length of the matrix chains resulting in the excellent agreement of experimental data and model predictions.en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2021en
dc.identifier.eissn1435-1528
dc.identifier.issn0035-4511
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/14038
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-12811
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc530 Physikde
dc.subject.otherchain scissionen
dc.subject.otherEIP modelen
dc.subject.otherelongationen
dc.subject.otherfinite extensibilityen
dc.subject.otherfractureen
dc.subject.otherinterchain pressureen
dc.subject.otherpolymer blenden
dc.subject.otherpolymer melten
dc.titleElongational viscosity and brittle fracture of bidisperse blends of a high and several low molar mass polystyrenesen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1007/s00397-021-01304-1en
dcterms.bibliographicCitation.issue12en
dcterms.bibliographicCitation.journaltitleRheologica Actaen
dcterms.bibliographicCitation.originalpublishernameSpringer Natureen
dcterms.bibliographicCitation.originalpublisherplaceBerlin ; Heidelbergen
dcterms.bibliographicCitation.pageend817en
dcterms.bibliographicCitation.pagestart803en
dcterms.bibliographicCitation.volume60en
tub.accessrights.dnbfreeen
tub.affiliationFak. 3 Prozesswissenschaften::Inst. Werkstoffwissenschaften und -technologien::FG Polymertechnik und Polymerphysikde
tub.affiliation.facultyFak. 3 Prozesswissenschaften
tub.affiliation.groupFG Polymertechnik und Polymerphysikde
tub.affiliation.instituteInst. Bauingenieurwesen
tub.affiliation.instituteInst. Werkstoffwissenschaften und -technologiende
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
wagner_etal_2021.pdf
Size:
3.74 MB
Format:
Adobe Portable Document Format
Description:

Collections