Time-retrenched synthesis of BaTaO2N by localizing an NH3 delivery system for visible-light-driven photoelectrochemical water oxidation at neutral pH: Solid-state reaction or flux method?

dc.contributor.authorHojamberdiev, Mirabbos
dc.contributor.authorMora-Hernandez, J. Manuel
dc.contributor.authorVargas, Ronald
dc.contributor.authorYamakata, Akira
dc.contributor.authorYubuta, Kunio
dc.contributor.authorHeppke, Eva Maria
dc.contributor.authorTorres-Martínez, Leticia M.
dc.contributor.authorTeshima, Katsuya
dc.contributor.authorLerch, Martin
dc.date.accessioned2022-02-07T15:44:46Z
dc.date.available2022-02-07T15:44:46Z
dc.date.issued2021-09-10
dc.description.abstractAmong 600 nm class transition-metal oxynitrides, BaTaO2N with a cubic Pm3̅m perovskite-type structure is promising for solar water oxidation due to its absorption of visible light up to 660 nm, narrower band gap (Eg = 1.9 eV), appropriate valence band edge position for oxygen evolution, good stability in concentrated alkaline solutions, and nontoxicity. However, high defect density stemmed from long high-temperature ammonolysis limits the separation and transfer efficiency of photogenerated charge carriers in BaTaO2N. Here, a NH3 delivery system is specifically localized just above the synthesis mixture to reduce the synthesis time and defect density of BaTaO2N by a fresh supply of more active nitriding species and minimizing the generation of N2 and H2. Particularly, the effects of synthesis temperature (700–950 °C), synthesis time (1–8 h), and gas composition are systematically investigated to gain insights into the formation of single-phase BaTaO2N by solid-state reaction and flux method. Time-dependent experiments conducted at 950 °C show that single-phase BaTaO2N can be synthesized ≥6 and ≥4 h by solid-state reaction and flux method, respectively, revealing the advantage of the flux method over solid-state reaction in a localized NH3 delivery system. Subsequently, the separation and transfer efficiency and kinetics of photogenerated charge carriers are studied in BaTaO2N samples. Photoelectrochemical studies made it possible to resolve trends during visible-light-induced water oxidation, evidencing the inverse relationship between recombination and charge transfer phenomena. Transient absorption spectroscopy reveals that the dynamics of the photogenerated charge carriers in both types of BaTaO2N samples are different: (i) BaTaO2N synthesized by flux method has a greater number of holes despite the similar number of deeply trapped charge carriers and (ii) solid-state reaction led to the formation of a higher number of free electrons in BaTaO2N. The findings demonstrate the advantage of reducing the transfer distance of active nitriding species to the surface of the synthesis mixture for enhancing the photoelectrochemical water oxidation of BaTaO2N at neutral pH.en
dc.description.sponsorshipEC/H2020/793882/EU/Carbon-Oxynitride Coupled Artificial Photosynthesis System For Solar Water Splitting Beyond 600 nm/H2O-SPLITen
dc.identifier.eissn2574-0962
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/16305
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-15080
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.otherBaTaO2Nen
dc.subject.otherammonolysisen
dc.subject.otherflux methoden
dc.subject.othersolid-state reactionen
dc.subject.othercharge carrier dynamicsen
dc.subject.otherphotoelectrochemical performanceen
dc.titleTime-retrenched synthesis of BaTaO2N by localizing an NH3 delivery system for visible-light-driven photoelectrochemical water oxidation at neutral pH: Solid-state reaction or flux method?en
dc.typeArticleen
dc.type.versionacceptedVersionen
dcterms.bibliographicCitation.doi10.1021/acsaem.1c01539en
dcterms.bibliographicCitation.issue9en
dcterms.bibliographicCitation.journaltitleACS Applied Energy Materialsen
dcterms.bibliographicCitation.originalpublishernameAmerican Chemical Society (ACS)en
dcterms.bibliographicCitation.originalpublisherplaceWashington, DCen
dcterms.bibliographicCitation.pageend9327en
dcterms.bibliographicCitation.pagestart9315en
dcterms.bibliographicCitation.volume4en
tub.accessrights.dnbdomain*
tub.affiliationFak. 2 Mathematik und Naturwissenschaften>Inst. Chemie>FG Anorganische Chemie - Festkörper- und Materialchemiede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Anorganische Chemie - Festkörper- und Materialchemiede
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Hojamberdiev_etal_Time-Retrenched_2021_Cover.pdf
Size:
3.77 MB
Format:
Adobe Portable Document Format
Description:
Collections