Directional sound source modeling using the adjoint Euler equations in a finite-difference time-domain approach

dc.contributor.authorStein, Lewin
dc.contributor.authorStraube, Florian
dc.contributor.authorWeinzierl, Stefan
dc.contributor.authorLemke, Mathias
dc.date.accessioned2021-11-19T21:35:53Z
dc.date.available2021-11-19T21:35:53Z
dc.date.issued2020-11-25
dc.description.abstractAn adjoint-based approach for synthesizing complex sound sources by discrete, grid-based monopoles in finite-difference time-domain simulations is presented. Previously, Stein, Straube, Sesterhenn, Weinzierl, and Lemke [(2019). J. Acoust. Soc. Am. 146(3), 1774–1785] demonstrated that the approach allows one to consider unsteady and non-uniform ambient conditions such as wind flow and thermal gradient in contrast to standard methods of numerical sound field simulation. In this work, it is proven that not only ideal monopoles but also realistic sound sources with complex directivity characteristics can be synthesized. In detail, an oscillating circular piston and a real two-way near-field monitor are modeled. The required number of monopoles in terms of the sound pressure level deviation between the directivity of the original and the synthesized source is analyzed. Since the computational effort is independent of the number of monopoles used for the synthesis, also more complex sources can be reproduced by increasing the number of monopoles utilized. In contrast to classical least-square problem solvers, this does not increase the computational effort, which makes the method attractive for predicting the effect of sound reinforcement systems with highly directional sources under difficult acoustic boundary conditions.en
dc.identifier.eissn1520-8524
dc.identifier.issn0001-4966
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/13906
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-12680
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc534 Schall und verwandte Schwingungende
dc.subject.otherfluid dynamicsen
dc.subject.othersound production technologyen
dc.subject.otherregression analysisen
dc.subject.otherpartial differential equationsen
dc.subject.otheracoustic transducersen
dc.subject.otherspeed of sounden
dc.subject.othersound projection devicesen
dc.subject.othermicrophonesen
dc.subject.othersignal processingen
dc.subject.otherfinite difference methodsen
dc.titleDirectional sound source modeling using the adjoint Euler equations in a finite-difference time-domain approachen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1121/10.0002425
dcterms.bibliographicCitation.issue5
dcterms.bibliographicCitation.journaltitleThe Journal of the Acoustical Society of Americaen
dcterms.bibliographicCitation.originalpublishernameAcoustical Society of America (ASA), AIP Publishingen
dcterms.bibliographicCitation.originalpublisherplaceMelville, NYen
dcterms.bibliographicCitation.pageend3085
dcterms.bibliographicCitation.pagestart3075
dcterms.bibliographicCitation.volume148
tub.accessrights.dnbfreeen
tub.affiliationFak. 1 Geistes- und Bildungswissenschaften::Inst. Sprache und Kommunikation::FG Audiokommunikationde
tub.affiliation.facultyFak. 1 Geistes- und Bildungswissenschaftende
tub.affiliation.groupFG Audiokommunikationde
tub.affiliation.instituteInst. Sprache und Kommunikationde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
stein_etal_2020.pdf
Size:
2.46 MB
Format:
Adobe Portable Document Format

Collections