Highly efficient catalytic pyrolysis of polyethylene waste to derive fuel products by novel polyoxometalate/kaolin composites

dc.contributor.authorAttique, Saira
dc.contributor.authorBatool, Madeeha
dc.contributor.authorYaqub, Mustansara
dc.contributor.authorGoerke, Oliver
dc.contributor.authorGregory, Duncan H.
dc.contributor.authorShah, Asma Tufail
dc.date.accessioned2020-11-12T10:31:26Z
dc.date.available2020-11-12T10:31:26Z
dc.date.issued2020-02-06
dc.date.updated2020-06-02T02:11:37Z
dc.descriptionThis publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.en
dc.descriptionDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.de
dc.description.abstractWe report here alumina-substituted Keggin tungstoborate/kaolin clay composite materials (KAB/kaolin) as polyethylene cracking catalysts. KAB/kaolin composites with varying concentrations of KAB (10–50 wt.%) were synthesized by the wet impregnation method and successfully characterized by Fourier-transform infrared spectroscopy, powder X-ray diffraction, thermo-gravimetric analysis and scanning electron microscopy with energy dispersive X-ray spectroscopy analytical techniques. Use of KAB loaded kaolin composites as the catalyst for low-density polyethylene (LDPE) cracking exhibited a higher percentage of polymer conversion (99%), producing 84 wt.% of fuel oil and negligible amount (˂ 1 wt.%) of solid residue while thermal cracking produced ~22 wt.% residue. Furthermore, gas chromatography–mass spectrometry analysis of oil obtained by non-catalytic cracking exhibited a high selectivity to high molecular weight hydrocarbons (C13–C23) compared to the catalytic cracking where 70 mol.% of gasoline range hydrocarbons (C5–C12) were produced. We propose that higher cracking ability of our prepared catalysts might ensue from both Brønsted and Lewis acid sites (from KAB and kaolin respectively), which enhanced the yield of liquid fuel products and reduced the cracking temperature of LDPE. These findings suggest that the prepared composites were cost-effective and excellent cracking catalysts that could be recommended for highly efficient conversion of waste plastic materials to petrochemicals at an industrial scale.en
dc.identifier.eissn1096-3669
dc.identifier.issn0734-242X
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11913
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10804
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc690 Hausbau, Bauhandwerkde
dc.subject.othercatalytic crackingen
dc.subject.othertungstoborateen
dc.subject.otherthermo-gravimetric analysisen
dc.subject.otherpolyethyleneen
dc.subject.othergas chromatography–mass spectrometryen
dc.titleHighly efficient catalytic pyrolysis of polyethylene waste to derive fuel products by novel polyoxometalate/kaolin compositesen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1177/0734242X19899718en
dcterms.bibliographicCitation.issue6en
dcterms.bibliographicCitation.journaltitleWaste Management & Researchen
dcterms.bibliographicCitation.originalpublishernameSAGEen
dcterms.bibliographicCitation.originalpublisherplaceLondonen
dcterms.bibliographicCitation.pageend695en
dcterms.bibliographicCitation.pagestart689en
dcterms.bibliographicCitation.volume38en
tub.accessrights.dnbdomain*
tub.affiliationFak. 3 Prozesswissenschaften>Inst. Werkstoffwissenschaften und -technologien>FG Keramische Werkstoffede
tub.affiliation.facultyFak. 3 Prozesswissenschaftende
tub.affiliation.groupFG Keramische Werkstoffede
tub.affiliation.instituteInst. Werkstoffwissenschaften und -technologiende
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
10.1177_0734242X19899718.pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format
Description:
Collections