Pivotal Role of Ni/ZrO2 Phase Boundaries for Coke-Resistant Methane Dry Reforming Catalysts

dc.contributor.authorHaug, Leander
dc.contributor.authorThurner, Christoph
dc.contributor.authorBekheet, Maged F.
dc.contributor.authorPloner, Kevin
dc.contributor.authorBischoff, Benjamin
dc.contributor.authorGurlo, Aleksander
dc.contributor.authorKunz, Martin
dc.contributor.authorSartory, Bernhard
dc.contributor.authorPenner, Simon
dc.contributor.authorKlötzer, Bernhard
dc.date.accessioned2023-06-19T16:17:24Z
dc.date.available2023-06-19T16:17:24Z
dc.date.issued2023-04-26
dc.date.updated2023-06-15T15:43:17Z
dc.description.abstractTo identify the synergistic action of differently prepared Ni-ZrO2 phase boundaries in methane dry reforming, we compared an “inverse” near-surface intermetallic NiZr catalyst precursor with the respective bulk-intermetallic NixZry material and a supported Ni-ZrO2 catalyst. In all three cases, stable and high methane dry reforming activity with enhanced anticoking properties can be assigned to the presence of extended Ni-ZrO2 phase boundaries, which result from in situ activation of the intermetallic Ni-Zr model catalyst systems under DRM conditions. All three catalysts operate bifunctionally; methane is essentially decomposed to carbon at the metallic Ni0 surface sites, whereas CO2 reacts to CO at reduced Zr centers induced by a spillover of carbon to the phase boundaries. On pure bulk Ni0, dissolved carbon accumulates in surface-near regions, leading to a sufficiently supersaturated state for completely surface-blocking graphitic carbon segregation. In strong contrast, surface-ZrO2 modified bulk Ni0 exhibits virtually the best decoking and carbon conversion conditions due to the presence of highly dispersed ZrO2 islands with a particularly large contribution of interfacial Ni0-ZrO2 sites and short C-diffusion pathways to the latter.
dc.identifier.eissn2073-4344
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/19387
dc.identifier.urihttps://doi.org/10.14279/depositonce-18183
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc600 Technik, Medizin, angewandte Wissenschaften::660 Chemische Verfahrenstechnik::666 Keramiktechnologie und zugeordnete Technologien
dc.subject.otherNiZr intermetallic catalyst
dc.subject.othermethane dry reforming
dc.subject.othernear ambient pressure XPS
dc.subject.othercarbon spillover
dc.subject.otherinverse model catalyst
dc.subject.otherchemical vapor deposition
dc.titlePivotal Role of Ni/ZrO2 Phase Boundaries for Coke-Resistant Methane Dry Reforming Catalysts
dc.typeArticle
dc.type.versionpublishedVersion
dcterms.bibliographicCitation.articlenumber804
dcterms.bibliographicCitation.doi10.3390/catal13050804
dcterms.bibliographicCitation.issue5
dcterms.bibliographicCitation.journaltitleCatalysts
dcterms.bibliographicCitation.originalpublishernameMDPI
dcterms.bibliographicCitation.originalpublisherplaceBasel
dcterms.bibliographicCitation.volume13
dcterms.rightsHolder.referenceCreative-Commons-Lizenz
tub.accessrights.dnbfree
tub.affiliationFak. 3 Prozesswissenschaften::Inst. Werkstoffwissenschaften und -technologien::FG Keramische Werkstoffe
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 2 of 2
Loading…
Thumbnail Image
Name:
catalysts-13-00804-v2.pdf
Size:
4 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
catalysts-13-00804-s001.zip
Size:
807.28 KB
Format:
ZIP archive format.
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections