TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations

dc.contributor.authorBalasubramani, Sree Ganesh
dc.contributor.authorChen, Guo P.
dc.contributor.authorCoriani, Sonia
dc.contributor.authorDiedenhofen, Michael
dc.contributor.authorFrank, Marius S.
dc.contributor.authorFranzke, Yannick J.
dc.contributor.authorFurche, Filipp
dc.contributor.authorGrotjahn, Robin
dc.contributor.authorHarding, Michael E.
dc.contributor.authorHättig, Christof
dc.contributor.authorHellweg, Arnim
dc.contributor.authorHelmich-Paris, Benjamin
dc.contributor.authorHolzer, Christof
dc.contributor.authorHuniar, Uwe
dc.contributor.authorKaupp, Martin
dc.contributor.authorMarefat Khah, Alireza
dc.contributor.authorKarbalaei Khani, Sarah
dc.contributor.authorMüller, Thomas
dc.contributor.authorMack, Fabian
dc.contributor.authorNguyen, Brian D.
dc.contributor.authorParker, Shane M.
dc.contributor.authorPerlt, Eva
dc.contributor.authorRappoport, Dmitrij
dc.contributor.authorReiter, Kevin
dc.contributor.authorRoy, Saswata
dc.contributor.authorRückert, Matthias
dc.contributor.authorSchmitz, Gunnar
dc.contributor.authorSierka, Marek
dc.contributor.authorTapavicza, Enrico
dc.contributor.authorTew, David P.
dc.contributor.authorvan Wüllen, Christoph
dc.contributor.authorVoora, Vamsee K.
dc.contributor.authorWeigend, Florian
dc.contributor.authorWodyński, Artur
dc.contributor.authorYu, Jason M.
dc.date.accessioned2020-05-28T09:30:15Z
dc.date.available2020-05-28T09:30:15Z
dc.date.issued2020-05-13
dc.description.abstractTURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy–cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe–Salpeter methods, second-order Møller–Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE’s functionality, including excited-state methods, RPA and Green’s function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE’s current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE’s development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted.en
dc.description.sponsorshipDFG, 390677874, EXC 2033: RESOLV (Ruhr Explores Solvation)en
dc.description.sponsorshipDFG, 255533046, SPP 1807: Control of London Dispersion Interactions in Molecular Chemistryen
dc.description.sponsorshipDFG, 398816777, SFB 1375: Nichtlineare Optik bis hin zu atomaren Skalenen
dc.identifier.eissn1089-7690
dc.identifier.issn0021-9606
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11243
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10131
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc541 Physikalische Chemiede
dc.subject.otherrandom phase approximationen
dc.subject.otherrelativistic effectsen
dc.subject.othermolecular propertiesen
dc.subject.othercoupled-cluster methodsen
dc.subject.otherdensity functional theoryen
dc.subject.othercondensed matter electronic structureen
dc.subject.otherGW methoden
dc.subject.otherexcited statesen
dc.subject.otherelectronic structureen
dc.subject.othermethodsen
dc.subject.otherTurbomoleen
dc.titleTURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulationsen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber184107
dcterms.bibliographicCitation.doi10.1063/5.0004635
dcterms.bibliographicCitation.issue18
dcterms.bibliographicCitation.journaltitleThe Journal of Chemical Physicsen
dcterms.bibliographicCitation.originalpublishernameAmerican Institute of Physics (AIP)en
dcterms.bibliographicCitation.originalpublisherplaceMelville, NYen
dcterms.bibliographicCitation.volume152
tub.accessrights.dnbfree
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Theoretische Chemie - Quantenchemiede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Theoretische Chemie - Quantenchemiede
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlinde

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
balasubramani_etal_2020.pdf
Size:
9.72 MB
Format:
Adobe Portable Document Format

Collections