Structural complexities and sodium-ion diffusion in the intercalates NaxTiS2: move it, change it, re-diffract it

dc.contributor.authorWiedemann, Dennis
dc.contributor.authorSuard, Emmanuelle
dc.contributor.authorLerch, Martin
dc.date.accessioned2019-09-09T09:10:59Z
dc.date.available2019-09-09T09:10:59Z
dc.date.issued2019-09-03
dc.description.abstractAfter momentary attention as potential battery materials during the 1980s, sodium titanium disulphides, like the whole Na–Ti–S system, have only been investigated in a slapdash fashion. While they pop up in current reviews on the very subject time and again, little is known about their actual crystal-structural features and sodium-ion diffusion within them. Herein, we present a short summary of literature on the Na–Ti–S system, a new synthesis route to Na0.5TiS2-3R1, and results of high-temperature X-ray and neutron diffractometry on this polytype, which is stable for medium sodium content. Based thereon, we propose a revision of the crystal structure reported in earlier literature (missed inversion symmetry). Analyses of framework topology, probability-density functions, and maps of the scattering-length density reconstructed using maximum-entropy methods (all derived from neutron diffraction) reveal a honeycomb-like conduction pattern with linear pathways between adjacent sodium positions; one-particle potentials indicate associated activation barriers of ca. 0.1 eV or less. These findings are complemented by elemental analyses and comments on the high-temperature polytype Na0.9TiS2-2H. Our study helps to get a grip on structural complexity in the intercalates NaxTiS2, caused by the interplay of layer stacking and Na–Ti–vacancy ordering, and provides first experimental results on pathways and barriers of sodium-ion migration.en
dc.description.sponsorshipDFG, 198634447, SPP 1613: Regenerativ erzeugte Brennstoffe durch lichtgetriebene Wasserspaltung: Aufklärung der Elementarprozesse und Umsetzungsperspektiven auf technologische Konzepteen
dc.description.sponsorshipEC/H2020/731096/EU/The Future of ILL 2030/FILL2030en
dc.identifier.eissn2046-2069
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/9941
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-8951
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/en
dc.subject.ddc546 Anorganische Chemiede
dc.subject.ddc548 Kristallografiede
dc.subject.otherneutron diffractionen
dc.subject.othersodium-ion conductoren
dc.subject.otherone-particle potentialen
dc.subject.othermaximum entropy methoden
dc.subject.othertopological methodsen
dc.titleStructural complexities and sodium-ion diffusion in the intercalates NaxTiS2: move it, change it, re-diffract iten
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1039/c9ra05690den
dcterms.bibliographicCitation.issue48en
dcterms.bibliographicCitation.journaltitleRSC Advances : an international journal to further the chemical sciencesen
dcterms.bibliographicCitation.originalpublishernameRoyal Society of Chemistryen
dcterms.bibliographicCitation.originalpublisherplaceCambridgeen
dcterms.bibliographicCitation.pageend27788en
dcterms.bibliographicCitation.pagestart27780en
dcterms.bibliographicCitation.volume9en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Anorganische Chemie - Festkörper- und Materialchemiede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Anorganische Chemie - Festkörper- und Materialchemiede
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
c9ra05690d.pdf
Size:
881.1 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections