On the Feasibility of Fan-Out Wafer-Level Packaging of Capacitive Micromachined Ultrasound Transducers (CMUT) by Using Inkjet-Printed Redistribution Layers

dc.contributor.authorRoshanghias, Ali
dc.contributor.authorDreissigacker, Marc
dc.contributor.authorScherf, Christina
dc.contributor.authorBretthauer, Christian
dc.contributor.authorRauter, Lukas
dc.contributor.authorZikulnig, Johanna
dc.contributor.authorBraun, Tanja
dc.contributor.authorBecker, Karl-F.
dc.contributor.authorRzepka, Sven
dc.contributor.authorSchneider-Ramelow, Martin
dc.date.accessioned2020-11-18T15:21:24Z
dc.date.available2020-11-18T15:21:24Z
dc.date.issued2020-05-31
dc.date.updated2020-06-14T11:53:41Z
dc.description.abstractFan-out wafer-level packaging (FOWLP) is an interesting platform for Microelectromechanical systems (MEMS) sensor packaging. Employing FOWLP for MEMS sensor packaging has some unique challenges, while some originate merely from the fabrication of redistribution layers (RDL). For instance, it is crucial to protect the delicate structures and fragile membranes during RDL formation. Thus, additive manufacturing (AM) for RDL formation seems to be an auspicious approach, as those challenges are conquered by principle. In this study, by exploiting the benefits of AM, RDLs for fan-out packaging of capacitive micromachined ultrasound transducers (CMUT) were realized via drop-on-demand inkjet printing technology. The long-term reliability of the printed tracks was assessed via temperature cycling tests. The effects of multilayering and implementation of an insulating ramp on the reliability of the conductive tracks were identified. Packaging-induced stresses on CMUT dies were further investigated via laser-Doppler vibrometry (LDV) measurements and the corresponding resonance frequency shift. Conclusively, the bottlenecks of the inkjet-printed RDLs for FOWLP were discussed in detail.en
dc.description.sponsorshipEC/H2020/737487/EU/(Ultra)Sound Interfaces and Low Energy iNtegrated SEnsors/SILENSEen
dc.identifier.eissn2072-666X
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12009
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10889
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitende
dc.subject.othermicroelectromechanical systems packagingen
dc.subject.otherinkjet printingen
dc.subject.otherredistribution layersen
dc.subject.othercapacitive micromachined ultrasound transducersen
dc.subject.otherfan-out wafer-level packagingen
dc.titleOn the Feasibility of Fan-Out Wafer-Level Packaging of Capacitive Micromachined Ultrasound Transducers (CMUT) by Using Inkjet-Printed Redistribution Layersen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber564en
dcterms.bibliographicCitation.doi10.3390/mi11060564en
dcterms.bibliographicCitation.issue6en
dcterms.bibliographicCitation.journaltitleMicromachinesen
dcterms.bibliographicCitation.originalpublishernameMDPIen
dcterms.bibliographicCitation.originalpublisherplaceBaselen
dcterms.bibliographicCitation.volume11en
tub.accessrights.dnbfreeen
tub.affiliationFak. 4 Elektrotechnik und Informatik>Inst. Hochfrequenz- und Halbleiter-Systemtechnologien>FG Werkstoffe der Hetero-Systemintegrationde
tub.affiliation.facultyFak. 4 Elektrotechnik und Informatikde
tub.affiliation.groupFG Werkstoffe der Hetero-Systemintegrationde
tub.affiliation.instituteInst. Hochfrequenz- und Halbleiter-Systemtechnologiende
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
micromachines-11-00564-v2.pdf
Size:
4.31 MB
Format:
Adobe Portable Document Format
Description:
Collections