Monte Carlo Simulations for the Analysis of Non-linear Parameter Confidence Intervals in Optimal Experimental Design

dc.contributor.authorKrausch, Niels
dc.contributor.authorBarz, Tilman
dc.contributor.authorSawatzki, Annina
dc.contributor.authorGruber, Mathis
dc.contributor.authorKamel, Sarah
dc.contributor.authorNeubauer, Peter
dc.contributor.authorCruz-Bournazou, Mariano Nicolas
dc.date.accessioned2019-06-25T10:11:11Z
dc.date.available2019-06-25T10:11:11Z
dc.date.issued2019-05-24
dc.description.abstractEspecially in biomanufacturing, methods to design optimal experiments are a valuable technique to fully exploit the potential of the emerging technical possibilities that are driving experimental miniaturization and parallelization. The general objective is to reduce the experimental effort while maximizing the information content of an experiment, speeding up knowledge gain in R&D. The approach of model-based design of experiments (known as MBDoE) utilizes the information of an underlying mathematical model describing the system of interest. A common method to predict the accuracy of the parameter estimates uses the Fisher information matrix to approximate the 90% confidence intervals of the estimates. However, for highly non-linear models, this method might lead to wrong conclusions. In such cases, Monte Carlo sampling gives a more accurate insight into the parameter's estimate probability distribution and should be exploited to assess the reliability of the approximations made through the Fisher information matrix. We first introduce the model-based optimal experimental design for parameter estimation including parameter identification and validation by means of a simple non-linear Michaelis-Menten kinetic and show why Monte Carlo simulations give a more accurate depiction of the parameter uncertainty. Secondly, we propose a very robust and simple method to find optimal experimental designs using Monte Carlo simulations. Although computational expensive, the method is easy to implement and parallelize. This article focuses on practical examples of bioprocess engineering but is generally applicable in other fields.en
dc.description.sponsorshipDFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berlinen
dc.identifier.eissn2296-4185
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/9544
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-8597
dc.language.isoenen
dc.relation.ispartof10.14279/depositonce-20061
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc570 Biowissenschaften; Biologiede
dc.subject.otherMonte Carloen
dc.subject.otherdesign of experimentsen
dc.subject.othervariance analysisen
dc.subject.othermodelingen
dc.subject.otherdynamic processesen
dc.titleMonte Carlo Simulations for the Analysis of Non-linear Parameter Confidence Intervals in Optimal Experimental Designen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber122en
dcterms.bibliographicCitation.doi10.3389/fbioe.2019.00122en
dcterms.bibliographicCitation.journaltitleFrontiers in Bioengineering and Biotechnologyen
dcterms.bibliographicCitation.originalpublishernameFrontiers Mediaen
dcterms.bibliographicCitation.originalpublisherplaceLausanneen
dcterms.bibliographicCitation.volume7en
tub.accessrights.dnbfreeen
tub.affiliationFak. 3 Prozesswissenschaften::Inst. Biotechnologie::FG Bioverfahrenstechnikde
tub.affiliation.facultyFak. 3 Prozesswissenschaftende
tub.affiliation.groupFG Bioverfahrenstechnikde
tub.affiliation.instituteInst. Biotechnologiede
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
fbioe-07-00122.pdf
Size:
2.68 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections