Is the Blade Element Momentum theory overestimating wind turbine loads? – An aeroelastic comparison between OpenFAST's AeroDyn and QBlade's Lifting-Line Free Vortex Wake method

dc.contributor.authorPerez-Becker, Sebastian
dc.contributor.authorPapi, Francesco
dc.contributor.authorSaverin, Joseph
dc.contributor.authorMarten, David
dc.contributor.authorBianchini, Alessandro
dc.contributor.authorPaschereit, Christian Oliver
dc.date.accessioned2020-11-30T09:04:10Z
dc.date.available2020-11-30T09:04:10Z
dc.date.issued2020-06-15
dc.description.abstractLoad calculations play a key role in determining the design loads of different wind turbine components. To obtain the aerodynamic loads for these calculations, the industry relies heavily on the Blade Element Momentum (BEM) theory. BEM methods use several engineering correction models to capture the aerodynamic phenomena present in Design Load Cases (DLCs) with turbulent wind. Because of this, BEM methods can overestimate aerodynamic loads under challenging conditions when compared to higher-order aerodynamic methods – such as the Lifting-Line Free Vortex Wake (LLFVW) method – leading to unnecessarily high design loads and component costs. In this paper, we give a quantitative answer to the question of load overestimation of a particular BEM implementation by comparing the results of aeroelastic load calculations done with the BEM-based OpenFAST code and the QBlade code, which uses a particular implementation of the LLFVW method. We compare extreme and fatigue load predictions from both codes using sixty-six 10 min load simulations of the Danish Technical University (DTU) 10 MW Reference Wind Turbine according to the IEC 61400-1 power production DLC group. Results from both codes show differences in fatigue and extreme load estimations for the considered sensors of the turbine. LLFVW simulations predict 9 % lower lifetime damage equivalent loads (DELs) for the out-of-plane blade root and the tower base fore–aft bending moments compared to BEM simulations. The results also show that lifetime DELs for the yaw-bearing tilt and yaw moments are 3 % and 4 % lower when calculated with the LLFVW code. An ultimate state analysis shows that extreme loads of the blade root out-of-plane bending moment predicted by the LLFVW simulations are 3 % lower than the moments predicted by BEM simulations. For the maximum tower base fore–aft bending moment, the LLFVW simulations predict an increase of 2 %. Further analysis reveals that there are two main contributors to these load differences. The first is the different way both codes treat the effect of the nonuniform wind field on the local blade aerodynamics. The second is the higher average aerodynamic torque in the LLFVW simulations. It influences the transition between operating modes of the controller and changes the aeroelastic behavior of the turbine, thus affecting the loads.en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2020en
dc.identifier.eissn2366-7451
dc.identifier.issn2366-7443
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12079
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10953
dc.language.isoenen
dc.relation.ispartof10.14279/depositonce-12726en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc600 Technik, Technologiede
dc.subject.otherload calculationsen
dc.subject.otherwind turbinesen
dc.subject.otherBlade Element Momentumen
dc.titleIs the Blade Element Momentum theory overestimating wind turbine loads? – An aeroelastic comparison between OpenFAST's AeroDyn and QBlade's Lifting-Line Free Vortex Wake methoden
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.5194/wes-5-721-2020en
dcterms.bibliographicCitation.issue2en
dcterms.bibliographicCitation.journaltitleWind Energy Scienceen
dcterms.bibliographicCitation.originalpublishernameCopernicusen
dcterms.bibliographicCitation.originalpublisherplaceGöttingenen
dcterms.bibliographicCitation.pageend743en
dcterms.bibliographicCitation.pagestart721en
dcterms.bibliographicCitation.volume5en
tub.accessrights.dnbfreeen
tub.affiliationFak. 5 Verkehrs- und Maschinensysteme::Inst. Strömungsmechanik und Technische Akustik (ISTA)::FG Experimentelle Strömungsmechanikde
tub.affiliation.facultyFak. 5 Verkehrs- und Maschinensystemede
tub.affiliation.groupFG Experimentelle Strömungsmechanikde
tub.affiliation.instituteInst. Strömungsmechanik und Technische Akustik (ISTA)de
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Perez-Becker_etal_Blade_2020.pdf
Size:
6.43 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections