Designing MOF Nanoarchitectures for Electrochemical Water Splitting

dc.contributor.authorZhang, Ben
dc.contributor.authorZheng, Yijuan
dc.contributor.authorMa, Tian
dc.contributor.authorYang, Chengdong
dc.contributor.authorPeng, Yifei
dc.contributor.authorZhou, Zhihao
dc.contributor.authorZhou, Mi
dc.contributor.authorLi, Shuang
dc.contributor.authorWang, Yinghan
dc.contributor.authorCheng, Chong
dc.date.accessioned2021-06-25T06:34:16Z
dc.date.available2021-06-25T06:34:16Z
dc.date.issued2021-03-22
dc.date.updated2021-06-14T11:00:02Z
dc.description.abstractElectrochemical water splitting has attracted significant attention as a key pathway for the development of renewable energy systems. Fabricating efficient electrocatalysts for these processes is intensely desired to reduce their overpotentials and facilitate practical applications. Recently, metal–organic framework (MOF) nanoarchitectures featuring ultrahigh surface areas, tunable nanostructures, and excellent porosities have emerged as promising materials for the development of highly active catalysts for electrochemical water splitting. Herein, the most pivotal advances in recent research on engineering MOF nanoarchitectures for efficient electrochemical water splitting are presented. First, the design of catalytic centers for MOF‐based/derived electrocatalysts is summarized and compared from the aspects of chemical composition optimization and structural functionalization at the atomic and molecular levels. Subsequently, the fast‐growing breakthroughs in catalytic activities, identification of highly active sites, and fundamental mechanisms are thoroughly discussed. Finally, a comprehensive commentary on the current primary challenges and future perspectives in water splitting and its commercialization for hydrogen production is provided. Hereby, new insights into the synthetic principles and electrocatalysis for designing MOF nanoarchitectures for the practical utilization of water splitting are offered, thus further promoting their future prosperity for a wide range of applications.en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2021
dc.identifier.eissn1521-4095
dc.identifier.issn0935-9648
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/13289
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-12081
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.otherelectrocatalytic nanostructures and electrocatalystsen
dc.subject.otherhydrogen evolution reactionen
dc.subject.othermetal–organic frameworksen
dc.subject.otheroxygen evolution reactionen
dc.subject.otherwater splittingen
dc.titleDesigning MOF Nanoarchitectures for Electrochemical Water Splittingen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber2006042en
dcterms.bibliographicCitation.doi10.1002/adma.202006042en
dcterms.bibliographicCitation.issue17en
dcterms.bibliographicCitation.journaltitleAdvanced Materialsen
dcterms.bibliographicCitation.originalpublishernameWileyen
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.volume33en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Funktionsmaterialiende
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Funktionsmaterialiende
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
ADMA_ADMA202006042.pdf
Size:
14.21 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections