Evaporation driven by conductive heat transport

dc.contributor.authorHomes, Simon
dc.contributor.authorHeinen, Matthias
dc.contributor.authorVrabec, Jadran
dc.contributor.authorFischer, Johann
dc.date.accessioned2020-12-03T10:26:53Z
dc.date.available2020-12-03T10:26:53Z
dc.date.issued2020-10-24
dc.description.abstractMolecular dynamics simulations are conducted to investigate the evaporation of the truncated (2.5σ) and shifted Lennard–Jones fluid into vacuum. Evaporation is maintained under stationary conditions, while the bulk liquid temperature and the thermal driving force gradient are varied over wide ranges. It is found that the particle flux and the energy flux solely depend on the interface temperature. Both of these quantities are correlated to estimate their values for macroscopically large systems. The latter is analysed by a hydrodynamic energy balance, considering conductive heat transport by Fourier's law. Following the Hertz–Knudsen approach, the evaporation coefficient is determined and found to be in good agreement with literature data based on the kinetic equation for fluids and molecular dynamics.en
dc.description.sponsorshipDFG, 84292822, TRR 75: Tropfendynamische Prozesse unter extremen Umgebungsbedingungenen
dc.description.sponsorshipBMBF, 01IH16008, Verbundprojekt: TaLPas - Task-basierte Lastverteilung und Auto-Tuning in der Partikelsimulationen
dc.identifier.eissn1362-3028
dc.identifier.issn0026-8976
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12110
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10985
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc530 Physikde
dc.subject.otherevaporationen
dc.subject.otherevaporation coefficienten
dc.subject.otherheat transporten
dc.subject.othermolecular dynamicsen
dc.subject.otherLennard–Jones fluiden
dc.titleEvaporation driven by conductive heat transporten
dc.typeArticleen
dc.type.versionacceptedVersionen
dcterms.bibliographicCitation.articlenumbere1836410en
dcterms.bibliographicCitation.doi10.1080/00268976.2020.1836410en
dcterms.bibliographicCitation.journaltitleMolecular Physicsen
dcterms.bibliographicCitation.originalpublishernameTaylor & Francisen
dcterms.bibliographicCitation.originalpublisherplaceLondonen
tub.accessrights.dnbdomain*
tub.affiliationFak. 3 Prozesswissenschaften::Inst. Prozess- und Verfahrenstechnik::FG Thermodynamik und Thermische Verfahrenstechnikde
tub.affiliation.facultyFak. 3 Prozesswissenschaftende
tub.affiliation.groupFG Thermodynamik und Thermische Verfahrenstechnikde
tub.affiliation.instituteInst. Prozess- und Verfahrenstechnikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
homes_etal_2020.pdf
Size:
7.88 MB
Format:
Adobe Portable Document Format
Description:
Accepted manuscript
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
5.75 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections