Thumbnail Image

Can GNSS reflectometry detect precipitation over oceans?

Asgarimehr, Milad; Zavorotny, Valery; Wickert, Jens; Reich, Sebastian

FG GNSS-Fernerkundung, Navigation und Positionierung

For the first time, a rain signature in Global Navigation Satellite System Reflectometry (GNSS‐R) observations is demonstrated. Based on the argument that the forward quasi‐specular scattering relies upon surface gravity waves with lengths larger than several wavelengths of the reflected signal, a commonly made conclusion is that the scatterometric GNSS‐R measurements are not sensitive to the surface small‐scale roughness generated by raindrops impinging on the ocean surface. On the contrary, this study presents an evidence that the bistatic radar cross section σ0 derived from TechDemoSat‐1 data is reduced due to rain at weak winds, lower than ≈ 6 m/s. The decrease is as large as ≈ 0.7 dB at the wind speed of 3 m/s due to a precipitation of 0–2 mm/hr. The simulations based on the recently published scattering theory provide a plausible explanation for this phenomenon which potentially enables the GNSS‐R technique to detect precipitation over oceans at low winds.