On the Lagrangian structure of integrable hierarchies

dc.contributor.authorSuris, Yuri B.
dc.contributor.authorVermeeren, Mats
dc.date.accessioned2017-09-01T08:04:39Z
dc.date.available2017-09-01T08:04:39Z
dc.date.issued2016
dc.description.abstractWe develop the concept of pluri-Lagrangian structures for integrable hierarchies. This is a continuous counterpart of the pluri-Lagrangian (or Lagrangian multiform) theory of integrable lattice systems. We derive the multi-time Euler Lagrange equations in their full generality for hierarchies of two-dimensional systems, and construct a pluri-Lagrangian formulation of the potential Korteweg-de Vries hierarchy.en
dc.identifier.isbn978-3-662-50447-5
dc.identifier.urihttp://depositonce.tu-berlin.de/handle/11303/6688
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-6129
dc.language.isoen
dc.relation.ispartof10.1007/978-3-662-50447-5
dc.rights.urihttps://creativecommons.org/licenses/by-nc/2.5/
dc.subject.ddc510 Mathematik
dc.titleOn the Lagrangian structure of integrable hierarchiesen
dc.typeBook Part
dc.type.versionpublishedVersion
dcterms.bibliographicCitation.booktitleAdvances in discrete differential geometry
dcterms.bibliographicCitation.doi10.1007/978-3-662-50447-5_11
dcterms.bibliographicCitation.editorBobenko, Alexander I.
dcterms.bibliographicCitation.originalpublishernameSpringer
dcterms.bibliographicCitation.originalpublisherplaceBerlin, Heidelberg
dcterms.bibliographicCitation.pageend378
dcterms.bibliographicCitation.pagestart347
tub.accessrights.dnbfree
tub.affiliationFak. 2 Mathematik und Naturwissenschaften>Inst. Mathematikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.instituteInst. Mathematikde
tub.publisher.universityorinstitutionTechnische Universität Berlin
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
10.1007_978-3-662-50447-5_11.pdf
Size:
490.56 KB
Format:
Adobe Portable Document Format
Description:
Collections