Ultralight covalent organic framework/graphene aerogels with hierarchical porosity

dc.contributor.authorLi, Changxia
dc.contributor.authorYang, Jin
dc.contributor.authorPachfule, Pradip
dc.contributor.authorLi, Shuang
dc.contributor.authorYe, Meng-Yang
dc.contributor.authorSchmidt, Johannes
dc.contributor.authorThomas, Arne
dc.date.accessioned2021-03-04T08:45:46Z
dc.date.available2021-03-04T08:45:46Z
dc.date.issued2020-09-18
dc.description.abstractThe fabrication of macroscopic objects from covalent organic frameworks (COFs) is challenging but of great significance to fully exploit their chemical functionality and porosity. Herein, COF/reduced graphene oxide (rGO) aerogels synthesized by a hydrothermal approach are presented. The COFs grow in situ along the surface of the 2D graphene sheets, which are stacked in a 3D fashion, forming an ultralight aerogel with a hierarchical porous structure after freeze-drying, which can be compressed and expanded several times without breaking. The COF/rGO aerogels show excellent absorption capacity (uptake of >200 g organic solvent/g aerogel), which can be used for removal of various organic liquids from water. Moreover, as active material of supercapacitor devices, the aerogel delivers a high capacitance of 269 F g −1 at 0.5 A g −1 and cycling stability over 5000 cycles. Macroscopic architectures of covalent organic frameworks (COF) allow to fully exploit their chemical functionality and porosity but achieving three-dimensional hierarchical porous COF architectures remains challenging. Here, the authors present a COF/reduced graphene oxide aerogel which is synthesized by growing COF during a hydrothermal process along the surface of graphene sheets.en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2020en
dc.description.sponsorshipDFG, 390540038, EXC 2008: Unifying Systems in Catalysis "UniSysCat"en
dc.identifier.eissn2041-1723
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12709
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-11509
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftenen
dc.subject.othermechanical and structural properties and devicesen
dc.subject.otherself-assemblyen
dc.subject.othersynthesisen
dc.subject.otherprocessingen
dc.subject.otherframework/graphene aerogelsen
dc.titleUltralight covalent organic framework/graphene aerogels with hierarchical porosityen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber4712en
dcterms.bibliographicCitation.doi10.1038/s41467-020-18427-3en
dcterms.bibliographicCitation.issue1en
dcterms.bibliographicCitation.journaltitleNature Communicationsen
dcterms.bibliographicCitation.originalpublishernameSpringerNatureen
dcterms.bibliographicCitation.originalpublisherplaceLondon [u.a.]en
dcterms.bibliographicCitation.volume11en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Funktionsmaterialiende
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Funktionsmaterialiende
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Li_etal_Ultralight_2020.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format

Collections