Electrification of Urban Waste Collection: Introducing a Simulation-Based Methodology for Feasibility, Impact and Cost Analysis

dc.contributor.authorEwert, Ricardo
dc.contributor.authorGrahle, Alexander
dc.contributor.authorMartins-Turner, Kai
dc.contributor.authorSyré, Anne
dc.contributor.authorNagel, Kai
dc.contributor.authorGöhlich, Dietmar
dc.date.accessioned2020-06-17T15:34:10Z
dc.date.available2020-06-17T15:34:10Z
dc.date.issued2020
dc.description.abstractWe introduce a multi-agent-based simulation methodology to investigate the feasibility and evaluate environmental and economic sustainability of an electrified urban waste collection. Electrification is a potential solution for transport decarbonization and already widely available for individual and public transport. However, the availability of electrified commercial vehicles like waste collection vehicles is still limited, despite their significant contribution to urban emissions. Moreover, there is a lack of clarity whether electric waste collection vehicles can persist in real word conditions and which system design is required. Therefore, we present a synthetic model for waste collection demand on a per-link basis, using open available data. The tour planning is solved by an open-source algorithm as a capacitated vehicle routing problem (CVRP). This generates plausible tours which handle the demand. The generated tours are simulated with an open-source transport simulation (MATSim) for both the diesel and the electric waste collection vehicles. To compare the life cycle costs, we analyze the data using total cost of ownership (TCO). Environmental impacts are evaluated based on a Well-to-Wheel approach. We present a comparison of the two propulsion types for the exemplary use case of Berlin. And we are able to generate a suitable planning to handle Berlin’s waste collection demand using battery electric vehicles only. The TCO calculation reveals that the electrification raises the total operator cost by 16-30 %, depending on the scenario and the battery size with conservative assumptions. Furthermore, the greenhouse gas emissions (GHG) can be reduced by 60-99%, depending on the carbon footprint of electric power generation.en
dc.description.sponsorshipDFG, 398051144, Analyse von Strategien zur vollständigen Dekarbonisierung des urbanen Verkehrsen
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11433
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10314
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc600 Technik, Technologiede
dc.subject.otherurban freight transporten
dc.subject.othermulti-agenten
dc.subject.othertraffic simulationen
dc.subject.otherelectrificationen
dc.subject.otherdecarbonizationen
dc.subject.othersustainabilityen
dc.subject.otherwaste collectionen
dc.subject.othervehicle routing problemen
dc.titleElectrification of Urban Waste Collection: Introducing a Simulation-Based Methodology for Feasibility, Impact and Cost Analysisen
dc.typePreprinten
dc.type.versionsubmittedVersionen
tub.accessrights.dnbfreeen
tub.affiliationFak. 5 Verkehrs- und Maschinensysteme>Inst. Land- und Seeverkehr (ILS)>FG Verkehrssystemplanung und Verkehrstelematikde
tub.affiliation.facultyFak. 5 Verkehrs- und Maschinensystemede
tub.affiliation.groupFG Verkehrssystemplanung und Verkehrstelematikde
tub.affiliation.instituteInst. Land- und Seeverkehr (ILS)de
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2019-14en
tub.series.nameVSP Working Paperen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
ewert_etal_2020.pdf
Size:
603.03 KB
Format:
Adobe Portable Document Format
Description:
Submitted manuscript
Collections