Accessing the dark exciton spin in deterministic quantum-dot microlenses

dc.contributor.authorHeindel, Tobias
dc.contributor.authorThoma, Alexander
dc.contributor.authorSchwartz, Ido
dc.contributor.authorSchmidgall, Emma R.
dc.contributor.authorGantz, Liron
dc.contributor.authorCogan, Dan
dc.contributor.authorStrauß, Max
dc.contributor.authorSchnauber, Peter
dc.contributor.authorGschrey, Manuel
dc.contributor.authorSchulze, Jan-Hindrik
dc.contributor.authorStrittmatter, André
dc.contributor.authorRodt, Sven
dc.contributor.authorGershoni, David
dc.contributor.authorReitzenstein, Stephan
dc.date.accessioned2018-01-19T09:39:59Z
dc.date.available2018-01-19T09:39:59Z
dc.date.issued2017
dc.description.abstractThe dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01) ns corresponding to a fine-structure splitting of (5.0 ± 0.7) μeV between its eigenstates ||↑⇑±↓⇓⟩. By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory.en
dc.description.sponsorshipDFG, 325093850, Open Access Publizieren 2017 - 2018 / Technische Universität Berlinde
dc.identifier.issn2378-0967
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/7344
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-6608
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc530 Physikde
dc.subject.otherexcitonsen
dc.subject.othermicroopticsen
dc.subject.otherquantum dotsen
dc.subject.otherquantum computingen
dc.subject.otherspectroscopyen
dc.titleAccessing the dark exciton spin in deterministic quantum-dot microlensesen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber121303en
dcterms.bibliographicCitation.doi10.1063/1.5004147en
dcterms.bibliographicCitation.issue12en
dcterms.bibliographicCitation.journaltitleAPL photonicsen
dcterms.bibliographicCitation.originalpublishernameAIP Publishingen
dcterms.bibliographicCitation.originalpublisherplaceMelville, NYen
dcterms.bibliographicCitation.volume2en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Festkörperphysik::AG Optoelektronik und Quantenbauelementede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupAG Optoelektronik und Quantenbauelementede
tub.affiliation.instituteInst. Festkörperphysikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
2017_heindel_et-al.pdf
Size:
1.95 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
5.75 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections